Suboptimal control of linear fuzzy systems

被引:9
作者
Zarei, H. [1 ]
Khastan, A. [2 ]
Rodriguez-Lopez, R. [3 ]
机构
[1] Payame Noor Univ, Dept Math, Fac Sci, POB 19395-4697, Tehran, Iran
[2] Inst Adv Studies Basic Sci, Dept Math, Zanjan, Iran
[3] Univ Santiago de Compostela, Fac Matemat, Dept Estat Anal Matemat & Optimizac, Inst Matemat, Santiago De Compostela 15782, Spain
关键词
Fuzzy differential equation; Fuzzy optimal control; Generalized differentiability; Variation of constants formula; Suboptimal solution; DIFFERENTIAL-EQUATIONS; MODEL;
D O I
10.1016/j.fss.2022.05.006
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we study first order linear fuzzy systems under generalized differentiability and present the general form of their solutions. Next, the fuzzy optimal control problem of these systems is considered to optimize the expected values of the appropriate objective fuzzy functions and the Pontryagin Maximum Principle is used to obtain a necessary optimality condition in the form of a fuzzy boundary value problem. Using the necessary optimality condition, the constant formulas for fuzzy optimal control function and the corresponding fuzzy state function are proposed. Due to the different formulations of a unique dynamical phenomenon in the fuzzy setting and different cases of the strongly generalized differentiability, for each fuzzy optimal control problem, we obtain a suboptimal solution. Finally, some examples including the optimal control of a cruise system, a RLC circuit system and a Mass-Spring-Damper system are given to illustrate our results.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页码:130 / 163
页数:34
相关论文
共 35 条
[1]  
Akin Ö, 2012, HACET J MATH STAT, V41, P387
[2]  
Amrahov SE, 2014, CMES-COMP MODEL ENG, V99, P351
[3]   Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations [J].
Bede, B ;
Gal, SG .
FUZZY SETS AND SYSTEMS, 2005, 151 (03) :581-599
[4]  
Bede B, 2013, STUD FUZZ SOFT COMP, V295, P1, DOI 10.1007/978-3-642-35221-8
[5]  
Bede B, 2007, LECT NOTES COMPUT SC, V4529, P23
[6]   First order linear fuzzy differential equations under generalized differentiability [J].
Bede, Barnabas ;
Rudas, Imre J. ;
Bencsik, Attila L. .
INFORMATION SCIENCES, 2007, 177 (07) :1648-1662
[7]   Revisiting fuzzy differential equations [J].
Bhaskar, TG ;
Lakshmikantham, V ;
Devi, V .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 58 (3-4) :351-358
[8]  
Buckley JJ, 2000, FUZZY SET SYST, V110, P43, DOI 10.1016/S0165-0114(98)00141-9
[9]   Fuzzy interval optimal control problem [J].
Campos, Jose Renato ;
Assuncao, Edvaldo ;
Silva, Geraldo Nunes ;
Lodwick, Weldon Alexander ;
Minhoto Teixeira, Marcelo Carvalho ;
Maqui-Huaman, Gino Gustavo .
FUZZY SETS AND SYSTEMS, 2020, 385 :169-181
[10]  
Chavent M, 2004, STUD CLASS DATA ANAL, P333