Single-timepoint low-dimensional characterization and classification of acute versus chronic multiple sclerosis lesions using machine learning

被引:10
作者
Caba, Bastien [1 ]
Cafaro, Alexandre [5 ]
Lombard, Aurelien [5 ]
Arnold, Douglas L. [2 ,3 ]
Elliott, Colm [3 ]
Liu, Dawei [1 ]
Jiang, Xiaotong [1 ]
Gafson, Arie [1 ]
Fisher, Elizabeth [1 ]
Belachew, Shibeshih Mitiku [1 ]
Paragios, Nikos [4 ,5 ]
机构
[1] Biogen, Biogen Digital Hlth, Cambridge, MA USA
[2] McGill Univ, Montreal Neurol Inst, Montreal, PQ, Canada
[3] NeuroRx Res, Montreal, PQ, Canada
[4] Univ Paris Saclay, Cent Supelec, Gif Sur Yvette, France
[5] TheraPanacea, Paris, France
关键词
Multiple sclerosis; Acute lesions; Radiomics; Image inpainting; Feature selection; Machine learning; TEXTURE ANALYSIS; INTERFERON BETA-1A; WHITE-MATTER; DISEASE-ACTIVITY; MRI; IMAGES; HETEROGENEITY; EVOLUTION; INSIGHTS; FEATURES;
D O I
10.1016/j.neuroimage.2022.119787
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Multiple sclerosis (MS) is a chronic inflammatory and neurodegenerative disease characterized by the appearance of focal lesions across the central nervous system. The discrimination of acute from chronic MS lesions may yield novel biomarkers of inflammatory disease activity which may support patient management in the clinical setting and provide endpoints in clinical trials. On a single timepoint and in the absence of a prior reference scan, existing methods for acute lesion detection rely on the segmentation of hyperintense foci on post-gadolinium T1-weighted magnetic resonance imaging (MRI), which may underestimate recent acute lesion activity. In this paper, we aim to improve the sensitivity of acute MS lesion detection in the single-timepoint setting, by developing a novel machine learning approach for the automatic detection of acute MS lesions, using single-timepoint conventional non-contrast T1- and T2-weighted brain MRI. The MRI input data are supplemented via the use of a convolutional neural network generating "lesion-free" reconstructions from original "lesion-present" scans using image inpainting. A multi-objective statistical ranking module evaluates the relevance of textural radiomic features from the core and periphery of lesion sites, compared within "lesion-free" versus "lesion-present" image pairs. Then, an ensemble classifier is optimized through a recursive loop seeking consensus both in the feature space (via a greedy feature-pruning approach) and in the classifier space (via model selection repeated after each pruning operation). This leads to the identification of a compact textural signature characterizing lesion phenotype. On the patch-level task of acute versus chronic MS lesion classification, our method achieves a balanced accuracy in the range of 74.3-74.6% on fully external validation cohorts.
引用
收藏
页数:21
相关论文
共 72 条
[51]   Effect of slice thickness on brain magnetic resonance image texture analysis [J].
Savio, Sami J. ;
Harrison, Lara C. V. ;
Luukkaala, Tiina ;
Heinonen, Tomi ;
Dastidar, Prasun ;
Soimakallio, Seppo ;
Eskola, Hannu J. .
BIOMEDICAL ENGINEERING ONLINE, 2010, 9
[52]   Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization [J].
Selvaraju, Ramprasaath R. ;
Cogswell, Michael ;
Das, Abhishek ;
Vedantam, Ramakrishna ;
Parikh, Devi ;
Batra, Dhruv .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :618-626
[53]   A nonparametric method for automatic correction of intensity nonuniformity in MRI data [J].
Sled, JG ;
Zijdenbos, AP ;
Evans, AC .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 1998, 17 (01) :87-97
[54]   Estimation of Multiple Sclerosis lesion age on magnetic resonance imaging [J].
Sweeney, Elizabeth M. ;
Nguyen, Thanh D. ;
Kuceyeski, Amy ;
Ryan, Sarah M. ;
Zhang, Shun ;
Zexter, Lily ;
Wang, Yi ;
Gauthier, Susan A. .
NEUROIMAGE, 2021, 225
[55]   Proton MR spectroscopic imaging in multiple sclerosis [J].
Tedeschi, G ;
Bonavita, S ;
McFarland, HF ;
Richert, N ;
Duyn, JH ;
Frank, JA .
NEURORADIOLOGY, 2002, 44 (01) :37-42
[56]   Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria [J].
Thompson, Alan J. ;
Banwell, Brenda L. ;
Barkhof, Frederik ;
Carroll, William M. ;
Coetzee, Timothy ;
Comi, Giancarlo ;
Correale, Jorge ;
Fazekas, Franz ;
Filippi, Massimo ;
Freedman, Mark S. ;
Fujihara, Kazuo ;
Galetta, Steven L. ;
Hartung, Hans Peter ;
Kappos, Ludwig ;
Lublin, Fred D. ;
Marrie, Ruth Ann ;
Miller, Aaron E. ;
Miller, David H. ;
Montalban, Xavier ;
Mowry, Ellen M. ;
Sorensen, Per Soelberg ;
Tintore, Mar ;
Traboulsee, Anthony L. ;
Trojano, Maria ;
Uitdehaag, Bernard M. J. ;
Vukusic, Sandra ;
Waubant, Emmanuelle ;
Weinshenker, Brian G. ;
Reingold, Stephen C. ;
Cohen, Jeffrey A. .
LANCET NEUROLOGY, 2018, 17 (02) :162-173
[57]  
Traboulsee Anthony L, 2006, Adv Neurol, V98, P125
[58]   A white matter lesion-filling approach to improve brain tissue volume measurements [J].
Valverde, Sergi ;
Oliver, Arnau ;
Llado, Xavier .
NEUROIMAGE-CLINICAL, 2014, 6 :86-92
[59]   Computational Radiomics System to Decode the Radiographic Phenotype [J].
van Griethuysen, Joost J. M. ;
Fedorov, Andriy ;
Parmar, Chintan ;
Hosny, Ahmed ;
Aucoin, Nicole ;
Narayan, Vivek ;
Beets-Tan, Regina G. H. ;
Fillion-Robin, Jean-Christophe ;
Pieper, Steve ;
Aerts, Hugo J. W. L. .
CANCER RESEARCH, 2017, 77 (21) :E104-E107
[60]   2021 MAGNIMS-CMSC-NAIMS consensus recommendations on the use of MRI in patients with multiple sclerosis [J].
Wattjes, Mike P. ;
Ciccarelli, Olga ;
Reich, Daniel S. ;
Banwell, Brenda ;
de Stefano, Nicola ;
Enzinger, Christian ;
Fazekas, Franz ;
Filippi, Massimo ;
Frederiksen, Jette ;
Gasperini, Claudio ;
Hacohen, Yael ;
Kappos, Ludwig ;
Li, David K. B. ;
Mankad, Kshitij ;
Montalban, Xavier ;
Newsome, Scott D. ;
Oh, Jiwon ;
Palace, Jacqueline ;
Rocca, Maria A. ;
Sastre-Garriga, Jaume ;
Tintore, Mar ;
Traboulsee, Anthony ;
Vrenken, Hugo ;
Yousry, Tarek ;
Barkhof, Frederik ;
Rovira, Alex .
LANCET NEUROLOGY, 2021, 20 (08) :653-670