Single-timepoint low-dimensional characterization and classification of acute versus chronic multiple sclerosis lesions using machine learning

被引:10
作者
Caba, Bastien [1 ]
Cafaro, Alexandre [5 ]
Lombard, Aurelien [5 ]
Arnold, Douglas L. [2 ,3 ]
Elliott, Colm [3 ]
Liu, Dawei [1 ]
Jiang, Xiaotong [1 ]
Gafson, Arie [1 ]
Fisher, Elizabeth [1 ]
Belachew, Shibeshih Mitiku [1 ]
Paragios, Nikos [4 ,5 ]
机构
[1] Biogen, Biogen Digital Hlth, Cambridge, MA USA
[2] McGill Univ, Montreal Neurol Inst, Montreal, PQ, Canada
[3] NeuroRx Res, Montreal, PQ, Canada
[4] Univ Paris Saclay, Cent Supelec, Gif Sur Yvette, France
[5] TheraPanacea, Paris, France
关键词
Multiple sclerosis; Acute lesions; Radiomics; Image inpainting; Feature selection; Machine learning; TEXTURE ANALYSIS; INTERFERON BETA-1A; WHITE-MATTER; DISEASE-ACTIVITY; MRI; IMAGES; HETEROGENEITY; EVOLUTION; INSIGHTS; FEATURES;
D O I
10.1016/j.neuroimage.2022.119787
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Multiple sclerosis (MS) is a chronic inflammatory and neurodegenerative disease characterized by the appearance of focal lesions across the central nervous system. The discrimination of acute from chronic MS lesions may yield novel biomarkers of inflammatory disease activity which may support patient management in the clinical setting and provide endpoints in clinical trials. On a single timepoint and in the absence of a prior reference scan, existing methods for acute lesion detection rely on the segmentation of hyperintense foci on post-gadolinium T1-weighted magnetic resonance imaging (MRI), which may underestimate recent acute lesion activity. In this paper, we aim to improve the sensitivity of acute MS lesion detection in the single-timepoint setting, by developing a novel machine learning approach for the automatic detection of acute MS lesions, using single-timepoint conventional non-contrast T1- and T2-weighted brain MRI. The MRI input data are supplemented via the use of a convolutional neural network generating "lesion-free" reconstructions from original "lesion-present" scans using image inpainting. A multi-objective statistical ranking module evaluates the relevance of textural radiomic features from the core and periphery of lesion sites, compared within "lesion-free" versus "lesion-present" image pairs. Then, an ensemble classifier is optimized through a recursive loop seeking consensus both in the feature space (via a greedy feature-pruning approach) and in the classifier space (via model selection repeated after each pruning operation). This leads to the identification of a compact textural signature characterizing lesion phenotype. On the patch-level task of acute versus chronic MS lesion classification, our method achieves a balanced accuracy in the range of 74.3-74.6% on fully external validation cohorts.
引用
收藏
页数:21
相关论文
共 72 条
[41]   V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation [J].
Milletari, Fausto ;
Navab, Nassir ;
Ahmadi, Seyed-Ahmad .
PROCEEDINGS OF 2016 FOURTH INTERNATIONAL CONFERENCE ON 3D VISION (3DV), 2016, :565-571
[42]   Long-Interval T2-Weighted Subtraction Magnetic Resonance Imaging A Powerful New Outcome Measure in Multiple Sclerosis Trials [J].
Moraal, Bastiaan ;
van den Elskamp, Ivo J. ;
Knol, Dirk L. ;
Uitdehaag, Bernard M. J. ;
Geurts, Jeroen J. G. ;
Vrenken, Hugo ;
Pouwels, Petra J. W. ;
van Schijndel, Ronald A. ;
Meier, Dominik S. ;
Guttmann, Charles R. G. ;
Barkhof, Frederik .
ANNALS OF NEUROLOGY, 2010, 67 (05) :667-675
[43]   Deep Learning for Predicting Enhancing Lesions in Mu pie Sclerosis from Noncontrast MRI [J].
Narayana, Ponnada A. ;
Coronado, Ivan ;
Sujit, Sheeba J. ;
Wolinsky, Jerry S. ;
Lublin, Fred D. ;
Gabr, Refaat E. .
RADIOLOGY, 2020, 294 (02) :398-404
[44]  
Nyúl LG, 1999, MAGNET RESON MED, V42, P1072, DOI 10.1002/(SICI)1522-2594(199912)42:6<1072::AID-MRM11>3.0.CO
[45]  
2-M
[46]   Gadolinium-Contrast Toxicity in Patients with Kidney Disease: Nephrotoxicity and Nephrogenic Systemic Fibrosis [J].
Perazella, Mark A. .
CURRENT DRUG SAFETY, 2008, 3 (01) :67-75
[47]   The pathology of MS - New insights and potential clinical applications [J].
Pittock, Sean J. ;
Lucchinetti, Claudia F. .
NEUROLOGIST, 2007, 13 (02) :45-56
[48]   MULTIPLE-SCLEROSIS - REMYELINATION OF NASCENT LESIONS [J].
PRINEAS, JW ;
BARNARD, RO ;
KWON, EE ;
SHARER, LR ;
CHO, ES .
ANNALS OF NEUROLOGY, 1993, 33 (02) :137-151
[49]   Magnetic resonance monitoring of lesion evolution in multiple sclerosis [J].
Rovira, Alex ;
Auger, Cristina ;
Alonso, Juli .
THERAPEUTIC ADVANCES IN NEUROLOGICAL DISORDERS, 2013, 6 (05) :298-310
[50]   A supervised framework with intensity subtraction and deformation field features for the detection of new T2-w lesions in multiple sclerosis [J].
Salem, Mostafa ;
Cabezas, Mariano ;
Valverde, Sergi ;
Pareto, Deborah ;
Oliver, Arnau ;
Salvi, Joaquim ;
Rovira, Alex ;
Llado, Xavier .
NEUROIMAGE-CLINICAL, 2018, 17 :607-615