Single-timepoint low-dimensional characterization and classification of acute versus chronic multiple sclerosis lesions using machine learning

被引:9
作者
Caba, Bastien [1 ]
Cafaro, Alexandre [5 ]
Lombard, Aurelien [5 ]
Arnold, Douglas L. [2 ,3 ]
Elliott, Colm [3 ]
Liu, Dawei [1 ]
Jiang, Xiaotong [1 ]
Gafson, Arie [1 ]
Fisher, Elizabeth [1 ]
Belachew, Shibeshih Mitiku [1 ]
Paragios, Nikos [4 ,5 ]
机构
[1] Biogen, Biogen Digital Hlth, Cambridge, MA USA
[2] McGill Univ, Montreal Neurol Inst, Montreal, PQ, Canada
[3] NeuroRx Res, Montreal, PQ, Canada
[4] Univ Paris Saclay, Cent Supelec, Gif Sur Yvette, France
[5] TheraPanacea, Paris, France
关键词
Multiple sclerosis; Acute lesions; Radiomics; Image inpainting; Feature selection; Machine learning; TEXTURE ANALYSIS; INTERFERON BETA-1A; WHITE-MATTER; DISEASE-ACTIVITY; MRI; IMAGES; HETEROGENEITY; EVOLUTION; INSIGHTS; FEATURES;
D O I
10.1016/j.neuroimage.2022.119787
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Multiple sclerosis (MS) is a chronic inflammatory and neurodegenerative disease characterized by the appearance of focal lesions across the central nervous system. The discrimination of acute from chronic MS lesions may yield novel biomarkers of inflammatory disease activity which may support patient management in the clinical setting and provide endpoints in clinical trials. On a single timepoint and in the absence of a prior reference scan, existing methods for acute lesion detection rely on the segmentation of hyperintense foci on post-gadolinium T1-weighted magnetic resonance imaging (MRI), which may underestimate recent acute lesion activity. In this paper, we aim to improve the sensitivity of acute MS lesion detection in the single-timepoint setting, by developing a novel machine learning approach for the automatic detection of acute MS lesions, using single-timepoint conventional non-contrast T1- and T2-weighted brain MRI. The MRI input data are supplemented via the use of a convolutional neural network generating "lesion-free" reconstructions from original "lesion-present" scans using image inpainting. A multi-objective statistical ranking module evaluates the relevance of textural radiomic features from the core and periphery of lesion sites, compared within "lesion-free" versus "lesion-present" image pairs. Then, an ensemble classifier is optimized through a recursive loop seeking consensus both in the feature space (via a greedy feature-pruning approach) and in the classifier space (via model selection repeated after each pruning operation). This leads to the identification of a compact textural signature characterizing lesion phenotype. On the patch-level task of acute versus chronic MS lesion classification, our method achieves a balanced accuracy in the range of 74.3-74.6% on fully external validation cohorts.
引用
收藏
页数:21
相关论文
共 72 条
[1]   Reliability of Classifying Multiple Sclerosis Disease Activity Using Magnetic Resonance Imaging in a Multiple Sclerosis Clinic [J].
Altay, Ebru Erbayat ;
Fisher, Elizabeth ;
Jones, Stephen E. ;
Hara-Cleaver, Claire ;
Lee, Jar-Chi ;
Rudick, Richard A. .
JAMA NEUROLOGY, 2013, 70 (03) :338-344
[2]   Evaluating and reducing the impact of white matter lesions on brain volume measurements [J].
Battaglini, Marco ;
Jenkinson, Mark ;
De Stefano, Nicola .
HUMAN BRAIN MAPPING, 2012, 33 (09) :2062-2071
[3]   MONOCYTE-MACROPHAGE DIFFERENTIATION IN EARLY MULTIPLE-SCLEROSIS LESIONS [J].
BRUCK, W ;
PORADA, P ;
POSER, S ;
RIECKMANN, P ;
HANEFELD, F ;
KRETZSCHMAR, HA ;
LASSMANN, H .
ANNALS OF NEUROLOGY, 1995, 38 (05) :788-796
[4]   Feature selection in machine learning: A new perspective [J].
Cai, Jie ;
Luo, Jiawei ;
Wang, Shulin ;
Yang, Sheng .
NEUROCOMPUTING, 2018, 300 :70-79
[5]   Pegylated interferon beta-1a for relapsing-remitting multiple sclerosis (ADVANCE): a randomised, phase 3, double-blind study [J].
Calabresi, Peter A. ;
Kieseier, Bernd C. ;
Arnold, Douglas L. ;
Balcer, Laura J. ;
Boyko, Alexey ;
Pelletier, Jean ;
Liu, Shifang ;
Zhu, Ying ;
Seddighzadeh, All ;
Hung, Serena ;
Deykin, Aaron .
LANCET NEUROLOGY, 2014, 13 (07) :657-665
[6]   Standardization of brain MR images across machines and protocols: bridging the gap for MRI-based radiomics [J].
Carre, Alexandre ;
Klausner, Guillaume ;
Edjlali, Myriam ;
Lerousseau, Marvin ;
Briend-Diop, Jade ;
Sun, Roger ;
Ammari, Samy ;
Reuze, Sylvain ;
Andres, Emilie Alvarez ;
Estienne, Theo ;
Niyoteka, Stephane ;
Battistella, Enzo ;
Vakalopoulou, Maria ;
Dhermain, Frederic ;
Paragios, Nikos ;
Deutsch, Eric ;
Oppenheim, Catherine ;
Pallud, Johan ;
Robert, Charlotte .
SCIENTIFIC REPORTS, 2020, 10 (01)
[7]  
Chassagnon G., 2020, MEDRXIV
[8]   Deep learning segmentation of gadolinium-enhancing lesions in multiple sclerosis [J].
Coronado, Ivan ;
Gabr, Refaat E. ;
Narayana, Ponnada A. .
MULTIPLE SCLEROSIS JOURNAL, 2021, 27 (04) :519-527
[9]   MRI contrast uptake in new lesions in relapsing-remitting MS followed at weekly intervals [J].
Cotton, F ;
Weiner, HL ;
Jolesz, FA ;
Guttmann, CRG .
NEUROLOGY, 2003, 60 (04) :640-646
[10]   Texture quantification of medical images using a novel complex space-frequency transform [J].
Drabycz, Sylvia ;
Mitchell, J. Ross .
INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2008, 3 (05) :465-475