Hybrid extreme learning machine based bidirectional long short-term memory for crop prediction

被引:1
|
作者
Shingade, Sachin Dattatraya [1 ]
Mudhalwadkar, Rohini Prashant [2 ]
机构
[1] SPPU Pune Univ, Dept Technol, Pune, Maharashtra, India
[2] Govt Coll Engn Pune, Dept Instrumentat & Control Engn, Dot SPPU Pune, Pune, Maharashtra, India
来源
关键词
bidirectional long short-term memory; crop prediction; feature fusion; feature selection; remora-based partial least squares regression method; RECOMMENDATION SYSTEM;
D O I
10.1002/cpe.7482
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This article introduces a new crop prediction method using hybrid machine learning (ML) and deep learning (DL) models. The proposed model comprises four phases: data preprocessing, feature fusion, feature selection, and prediction. Initially, the dataset is built with the information collected by 250 sensors located at different places in Maharashtra. The constructed dataset has provided sample data for 31 crops, each with four attributes: temperature, humidity, rainfall, and soil potential of hydrogen. After constructing the dataset, preprocessing is the initial step of the proposed framework. Then, feature fusion and selection were performed using the remora-based partial least squares regression method to achieve the best accuracy. Eventually, the most discriminatory features are incorporated into the hybrid ML and DL model known as the extreme learning machine based on the bi-directional long short-term memory for final prediction. The proposed method is implemented in the python platform, and the performance is evaluated in terms of accuracy, precision, recall, F-measure, Kappa, MAE, and log loss. Then, the performance of the proposed method is compared with recent existing methods. As a result, the simulated outcomes proved that the proposed method had achieved better performance than the existing methods.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Short-Term Wind Power Prediction Based on Data Reconstruction and Improved Extreme Learning Machine
    Haobo Li
    Hairong Zou
    Arabian Journal for Science and Engineering, 2022, 47 : 3669 - 3682
  • [42] Short-Term Wind Power Prediction Based on Data Reconstruction and Improved Extreme Learning Machine
    Li, Haobo
    Zou, Hairong
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2022, 47 (03) : 3669 - 3682
  • [43] Short-Term Wind Power Prediction Based on Empirical Mode Decomposition and Extreme Learning Machine
    Wu, Jiajia
    Liu, Changliang
    PROCEEDINGS OF THE 2016 5TH INTERNATIONAL CONFERENCE ON ENVIRONMENT, MATERIALS, CHEMISTRY AND POWER ELECTRONICS, 2016, 84 : 872 - 877
  • [44] Hybrid Deep Learning Network Intrusion Detection System Based on Convolutional Neural Network and Bidirectional Long Short-Term Memory
    Jihado, Anindra Ageng
    Girsang, Abba Suganda
    JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, 2024, 15 (02) : 219 - 232
  • [45] Hybrid long short-term memory and bidirectional multichannel network cascaded with split convolution for short-term load forecasting
    Hasanat, Syed Muhammad
    Ullah, Irshad
    Aurangzeb, Khursheed
    Rizwan, Muhammad
    Alhussein, Musaed
    Anwar, Muhammad Shahid
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 147
  • [46] Short-term Load Prediction Based on Combined Model of Long Short-term Memory Network and Light Gradient Boosting Machine
    Chen W.
    Hu Z.
    Yue J.
    Du Y.
    Qi Q.
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2021, 45 (04): : 91 - 97
  • [47] Jointly Optimized Extreme Learning Machine for Short-Term Prediction of Fading Channel
    Sui, Yongbo
    Yu, Wenxin
    Luo, Qiwu
    IEEE ACCESS, 2018, 6 : 49029 - 49039
  • [48] District heating load prediction algorithm based on bidirectional long short-term memory network model
    Cui, Mianshan
    ENERGY, 2022, 254
  • [49] A Novel Hybrid Model for Short-Term Traffic Flow Prediction Based on Extreme Learning Machine and Improved Kernel Density Estimation
    Zhao, Leina
    Bai, Yujia
    Zhang, Sishi
    Wang, Yanpeng
    Kang, Jie
    Zhang, Wenxuan
    SUSTAINABILITY, 2022, 14 (24)
  • [50] Spectrum Prediction Based on Taguchi Method in Deep Learning With Long Short-Term Memory
    Yu, Ling
    Chen, Jin
    Ding, Guoru
    Tu, Ya
    Yang, Jian
    Sun, Jiachen
    IEEE ACCESS, 2018, 6 : 45923 - 45933