Hybrid extreme learning machine based bidirectional long short-term memory for crop prediction

被引:1
|
作者
Shingade, Sachin Dattatraya [1 ]
Mudhalwadkar, Rohini Prashant [2 ]
机构
[1] SPPU Pune Univ, Dept Technol, Pune, Maharashtra, India
[2] Govt Coll Engn Pune, Dept Instrumentat & Control Engn, Dot SPPU Pune, Pune, Maharashtra, India
关键词
bidirectional long short-term memory; crop prediction; feature fusion; feature selection; remora-based partial least squares regression method; RECOMMENDATION SYSTEM;
D O I
10.1002/cpe.7482
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This article introduces a new crop prediction method using hybrid machine learning (ML) and deep learning (DL) models. The proposed model comprises four phases: data preprocessing, feature fusion, feature selection, and prediction. Initially, the dataset is built with the information collected by 250 sensors located at different places in Maharashtra. The constructed dataset has provided sample data for 31 crops, each with four attributes: temperature, humidity, rainfall, and soil potential of hydrogen. After constructing the dataset, preprocessing is the initial step of the proposed framework. Then, feature fusion and selection were performed using the remora-based partial least squares regression method to achieve the best accuracy. Eventually, the most discriminatory features are incorporated into the hybrid ML and DL model known as the extreme learning machine based on the bi-directional long short-term memory for final prediction. The proposed method is implemented in the python platform, and the performance is evaluated in terms of accuracy, precision, recall, F-measure, Kappa, MAE, and log loss. Then, the performance of the proposed method is compared with recent existing methods. As a result, the simulated outcomes proved that the proposed method had achieved better performance than the existing methods.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Time series prediction method based on the bidirectional long short-term memory network
    Guan, Yepeng
    Su, Guangyao
    Sheng, Yi
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2024, 51 (03): : 103 - 112
  • [2] Comparative study of long short-term memory (LSTM), bidirectional LSTM, and traditional machine learning approaches for energy consumption prediction
    Alizadegan, Hamed
    Malki, Behzad Rashidi
    Radmehr, Arian
    Karimi, Hossein
    Ilani, Mohsen Asghari
    ENERGY EXPLORATION & EXPLOITATION, 2025, 43 (01) : 281 - 301
  • [3] Prediction of photovoltaic power generation based on parallel bidirectional long short-term memory networks
    Rao, Zhi
    Yang, Zaimin
    Li, Jiaming
    Li, Lifeng
    Wan, Siyang
    ENERGY REPORTS, 2024, 12 : 3620 - 3629
  • [4] Hybrid bidirectional long short term memory with black widow optimization for crop yield prediction using data mining
    Joseph, Linu
    Ramasamy, Dhanapal
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2023, 35 (23)
  • [5] Short-term natural gas consumption prediction based on wavelet transform and bidirectional long short-term memory optimized by Bayesian network
    Li, Zhaoyang
    Liu, Liang
    Qiao, Weibiao
    ENERGY SCIENCE & ENGINEERING, 2022, 10 (09) : 3281 - 3300
  • [6] Time Series-based Spoof Speech Detection Using Long Short-term Memory and Bidirectional Long Short-term Memory
    Mirza, Arsalan R.
    Al-Talabani, Abdulbasit K.
    ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY, 2024, 12 (02): : 119 - 129
  • [7] A hybrid prediction model of improved bidirectional long short-term memory network for cooling load based on PCANet and attention mechanism
    Yan, Xiuying
    Ji, Xingxing
    Meng, Qinglong
    Sun, Hang
    Lei, Yu
    ENERGY, 2024, 292
  • [8] Hybrid Deep Learning Network Intrusion Detection System Based on Convolutional Neural Network and Bidirectional Long Short-Term Memory
    Jihado, Anindra Ageng
    Girsang, Abba Suganda
    JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, 2024, 15 (02) : 219 - 232
  • [9] Hybrid long short-term memory and bidirectional multichannel network cascaded with split convolution for short-term load forecasting
    Hasanat, Syed Muhammad
    Ullah, Irshad
    Aurangzeb, Khursheed
    Rizwan, Muhammad
    Alhussein, Musaed
    Anwar, Muhammad Shahid
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 147
  • [10] Ensemble deep learning models for protein secondary structure prediction using bidirectional temporal convolution and bidirectional long short-term memory
    Yuan, Lu
    Ma, Yuming
    Liu, Yihui
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2023, 11