AFFINE MAPPINGS AND MULTIPLIERS FOR WEIGHTED ORLICZ SPACES OVER THE AFFINE GROUP R+ x R

被引:0
作者
Uster, Ruya [1 ]
机构
[1] Istanbul Univ, Fac Sci, Dept Math, Istanbul, Turkiye
来源
COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS | 2024年 / 73卷 / 01期
关键词
Affine group; affine mapping; multiplier; weighted Orlicz space; ALGEBRAS;
D O I
10.31801/cfsuasmas.1282587
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A = R+ x R be the affine group with a right Haar measure mu, omega be a weight function on A and phi be a Young function. We characterize the affine continuous mappings on the subsets of L phi(A, omega). Moreover we show that there exists an isometric isomorphism between the multiplier of the pair (L1(A) boolean AND L phi (A), L1(A)) and the space of bounded measures M(A).
引用
收藏
页码:153 / 164
页数:12
相关论文
共 30 条
  • [1] Banach-Orlicz Algebras on a Locally Compact Group
    Akbarbaglu, Ibrahim
    Maghsoudi, Saeid
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2013, 10 (04) : 1937 - 1947
  • [2] Bennet G., 1988, INTERPOLATION OPERAT
  • [3] Affine quantum harmonic analysis
    Berge, Eirik
    Berge, Stine Marie
    Luef, Franz
    Skrettingland, Eirik
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2022, 282 (04)
  • [4] The affine Wigner distribution
    Berge, Eirik
    Berge, Stine Marie
    Luef, Franz
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2022, 56 : 150 - 175
  • [5] Birnbaum, 1931, STUD MATH, V3, P1, DOI DOI 10.4064/SM-3-1-1-67
  • [6] Notes on bilinear multipliers on Orlicz spaces
    Blasco, Oscar
    Osancliol, Alen
    [J]. MATHEMATISCHE NACHRICHTEN, 2019, 292 (12) : 2522 - 2536
  • [7] Sobolev embeddings in Orlicz and Lorentz spaces with measures
    Cianchi, Andrea
    Pick, Lubos
    Slavikova, Lenka
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 485 (02)
  • [8] Conway JB., 2007, COURSE FUNCTIONAL AN, DOI DOI 10.1007/978-1-4757-4383-8
  • [9] Edwards R.E., 1959, Trans. Am. Math. Soc, V93, P369, DOI [DOI 10.1090/S0002-9947-1959-0112050-4, 10.2307/1993502, 10.1090/s0002-9947-1959-0112050-4]
  • [10] GAUDRY GI, 1969, P LOND MATH SOC, V19, P327