Identification of anti-gastric cancer effects and molecular mechanisms of resveratrol: From network pharmacology and bioinformatics to experimental validation

被引:4
|
作者
Ma, Ying-Qian [1 ,2 ]
Zhang, Ming [1 ,5 ]
Sun, Zhen-Hua [1 ]
Tang, Hong-Yue [3 ]
Wang, Ying [2 ]
Liu, Jiang-Xue [2 ]
Zhang, Zhan-Xue [4 ]
Wang, Chao [3 ]
机构
[1] Hebei Gen Hosp, Dept Oncol, Shijiazhuang 050051, Hebei, Peoples R China
[2] Hebei Med Univ, Sch Grad Studies, Shijiazhuang 050017, Hebei, Peoples R China
[3] Hebei Gen Hosp, Clin Med Res Ctr, Shijiazhuang 050051, Hebei, Peoples R China
[4] Hebei Med Univ, Hosp 2, Dept Gastrointestinal Surg, Shijiazhuang 050000, Hebei, Peoples R China
[5] Hebei Gen Hosp, Dept Oncol, 348 Heping West Rd, Shijiazhuang 050051, Hebei, Peoples R China
关键词
Resveratrol; Gastric cancer; Network pharmacology; Bioinformatics; Molecular docking; CELL-CYCLE; C-FOS; PROLIFERATION; INHIBITORS; PROTEIN;
D O I
10.4251/wjgo.v16.i2.493
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
BACKGROUND Gastric cancer (GC) is one of the most aggressive malignancies with limited therapeutic options and a poor prognosis. Resveratrol, a non-flavonoid polyphenolic compound found in a variety of Chinese medicinal materials, has shown excellent anti-GC effect. However, its exact mechanisms of action in GC have not been clarified. AIM To identify the effects of resveratrol on GC progression and explore the related molecular mechanisms. METHODS Action targets of resveratrol and GC-related targets were screened from public databases. The overlapping targets between the two were confirmed using a Venn diagram, and a "Resveratrol-Target-GC" network was constructed using Cytoscape software version 3.9.1. The protein-protein interaction (PPI) network was constructed using STRING database and core targets were identified by PPI network analysis. The Database for Annotation, Visualization and Integrated Discovery database was used for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. A "Target-Pathway" network was created by using Cytoscape 3.9.1. The RNA and protein expression levels of core target genes were observed using the Cancer Genome Atlas and the Human Protein Atlas databases. DriverDBv3 and Timer2.0 databases were used for survival and immune infiltration analysis. Subsequently, the findings were further verified by molecular docking technology and in vitro experiments. RESULTS A total of 378 resveratrol action targets and 2154 GC disease targets were obtained from public databases, and 181 intersection targets between the two were screened by Venn diagram. The top 20 core targets were identified by PPI network analysis of the overlapping targets. GO function analysis mainly involved protein binding, identical protein binding, cytoplasm, nucleus, negative regulation of apoptotic process and response to xenobiotic stimulus. KEGG enrichment analysis suggested that the involved signaling pathways mainly included PI3K-AKT signaling pathway, MAPK signaling pathway, IL-17 signaling pathway, TNF signaling pathway, ErbB signaling pathway, etc. FBJ murine osteosarcoma viral oncogene homolog (FOS) and matrix metallopeptidase 9 (MMP9) were selected by differential expression analysis, and they were closely associated with immune infiltration. Molecular docking results showed that resveratrol docked well with these two targets. Resveratrol treatment arrested the cell cycle at the S phase, induced apoptosis, and weakened viability, migration and invasion in a dose-dependent manner. Furthermore, resveratrol could exhibit anti-GC effect by regulating FOS and MMP9 expression. CONCLUSION The anti-GC effects of resveratrol are related to the inhibition of cell proliferation, migration, invasion and induction of cell cycle arrest and apoptosis by targeting FOS and MMP9.
引用
收藏
页码:493 / 513
页数:22
相关论文
共 50 条
  • [31] Exploring the mechanism and experimental validation of Fuzi Lizhong Tang in treating gastric cancer based on network pharmacology and molecular docking
    Zhang, F. -Y.
    Guo, S. -C.
    EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES, 2023, 27 (19) : 9192 - 9204
  • [32] Uncovering the Anti-Angiogenic Mechanisms of Centella asiatica via Network Pharmacology and Experimental Validation
    Zhao, Bingtian
    Li, Yuanyuan
    Wang, Binya
    Liu, Jing
    Yang, Yang
    Quan, Qianghua
    An, Quan
    Liang, Rong
    Liu, Chunhuan
    Yang, Cheng
    MOLECULES, 2024, 29 (02):
  • [33] Network pharmacology, bioinformatics, and experimental validation to identify the role of Hedyotis diffusa willd against gastric cancer through the activation of the endoplasmic reticulum stress
    Ou, Ling
    Li, Mengyang
    Hou, Yan
    HELIYON, 2024, 10 (07)
  • [34] Utilizing network pharmacology and experimental validation to explore the potential molecular mechanisms of raw Pinellia ternate in treating esophageal cancer
    Liu, Yanxin
    Bai, Yunfei
    Zhang, Jinbang
    Silva-Filho, Reginaldo
    Zhu, Qingchun
    Lei, Zhen
    JOURNAL OF GASTROINTESTINAL ONCOLOGY, 2023, 14 (05) : 2006 - 2017
  • [35] Uncovering the mechanism of resveratrol in the treatment of diabetic kidney disease based on network pharmacology, molecular docking, and experimental validation
    Chen, Shengnan
    Li, Bo
    Chen, Lei
    Jiang, Hongli
    JOURNAL OF TRANSLATIONAL MEDICINE, 2023, 21 (01)
  • [36] The Molecular Mechanisms of Bergapten Against Abdominal Aortic Aneurysm: Evidence From Network Pharmacology, Molecular Docking/Dynamics, and Experimental Validation
    Xu, Fujia
    Luo, Sihan
    Huang, Zhenhua
    Wang, Junfen
    Li, Tian
    Zhong, Lintao
    Si, Xiaoyun
    JOURNAL OF CELLULAR BIOCHEMISTRY, 2025, 126 (04)
  • [37] Uncovering the mechanism of resveratrol in the treatment of diabetic kidney disease based on network pharmacology, molecular docking, and experimental validation
    Shengnan Chen
    Bo Li
    Lei Chen
    Hongli Jiang
    Journal of Translational Medicine, 21
  • [38] Network pharmacology-based identification of the antitumor effects of taraxasterol in gastric cancer
    Chen, Wei
    Li, Jingwei
    Li, Chen
    Fan, Hui-Ning
    Zhang, Jing
    Zhu, Jin-Shui
    INTERNATIONAL JOURNAL OF IMMUNOPATHOLOGY AND PHARMACOLOGY, 2020, 34
  • [39] Integrated network pharmacology, bioinformatics, and molecular docking to explore the mechanisms of berberine regulating autophagy in breast cancer
    Huang, Bowan
    Wen, Gengzhi
    Li, Rujia
    Wu, Minhua
    Zou, Zhenning
    MEDICINE, 2023, 102 (36) : E35070
  • [40] Elucidating the molecular mechanisms of pterostilbene against cervical cancer through an integrated bioinformatics and network pharmacology approach
    Li, Xiang
    Yu, Dequan
    Wang, Qiming
    Chen, Yating
    Jiang, Hanbing
    CHEMICO-BIOLOGICAL INTERACTIONS, 2024, 396