The Cobalt Supply Chain and Environmental Life Cycle Impacts of Lithium-Ion Battery Energy Storage Systems

被引:3
|
作者
Das, Jani [1 ]
Kleiman, Andrew [2 ]
Rehman, Atta Ur [1 ]
Verma, Rahul [3 ]
Young, Michael H. [1 ]
机构
[1] Univ Texas Austin, Jackson Sch Geosci, Bur Econ Geol, Austin, TX 78712 USA
[2] Univ Texas Austin, Jackson Sch Geosci, Energy & Earth Resources Grad Program, Austin, TX 78712 USA
[3] Fractal Business Analyt LLC, Austin, TX 78735 USA
关键词
life cycle assessment; cobalt; supply chain; lithium-ion batteries; environmental sustainability; PLUG-IN HYBRID; NICKEL; METALS;
D O I
10.3390/su16051910
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Lithium-ion batteries (LIBs) deployed in battery energy storage systems (BESS) can reduce the carbon intensity of the electricity-generating sector and improve environmental sustainability. The aim of this study is to use life cycle assessment (LCA) modeling, using data from peer-reviewed literature and public and private sources, to quantify environmental impacts along the supply chain for cobalt, a crucial component in many types of LIBs. The study seeks to understand where in the life cycle stage the environmental impacts are highest, thus highlighting actions that can be taken to improve sustainability of the LIB supply chain. The system boundary for this LCA is cradle-to-gate. Impact assessment follows ReCiPe Midpoint (H) 2016. We assume a 30-year modeling period, with augmentation occurring at the end of the 3rd, 7th, and 14th years of operations, before a complete replacement in the 21st year. Three refinery locations (China, Canada, and Finland), a range of ore grades, and five battery chemistries (NMC111, NMC532, NMC622, NMC811, and NCA) are used in scenarios to better estimate their effect on the life cycle impacts. Insights from the study are that impacts along nearly all pathways increase according to an inverse power-law relationship with ore grade; refining outside of China can reduce global warming potential (GWP) by over 12%; and GWP impacts for cobalt used in NCA and other NMC battery chemistries are 63% and 45-74% lower than in NMC111, respectively. When analyzed on a single-score basis, marine and freshwater ecotoxicity are prominent. For an ore grade of 0.3%, the GWP values for the Canada route decrease at a rate of 58% to 65%, and those for Finland route decrease by 71% to 76% from the base case. Statistical analysis shows that cobalt content in the battery is the highest predictor (R2 = 0.988), followed by the ore grade (R2 = 0.966) and refining location (R2 = 0.766), when assessed for correlation individually. The results presented here point to areas where environmental burdens of LIBs can be reduced, and thus they are helpful to policy and investment decision makers.
引用
收藏
页数:28
相关论文
共 50 条
  • [21] Applying levelized cost of storage methodology to utility-scale second-life lithium-ion battery energy storage systems
    Steckel, Tobiah
    Kendall, Alissa
    Ambrose, Hanjiro
    APPLIED ENERGY, 2021, 300
  • [22] Life cycle environmental impacts of pyrometallurgical and hydrometallurgical recovery processes for spent lithium-ion batteries: present and future perspectives
    Liu, Aiwei
    Hu, Guangwen
    Wu, Yufeng
    Guo, Fu
    CLEAN TECHNOLOGIES AND ENVIRONMENTAL POLICY, 2023, 26 (2) : 381 - 400
  • [23] Life cycle environmental impacts of pyrometallurgical and hydrometallurgical recovery processes for spent lithium-ion batteries: present and future perspectives
    Aiwei Liu
    Guangwen Hu
    Yufeng Wu
    Fu Guo
    Clean Technologies and Environmental Policy, 2024, 26 : 381 - 400
  • [24] Life cycle environmental impacts of current and future battery-grade lithium supply from brine and spodumene
    Chordia, Mudit
    Wickerts, Sanna
    Nordelof, Anders
    Arvidsson, Rickard
    RESOURCES CONSERVATION AND RECYCLING, 2022, 187
  • [25] Research gaps in environmental life cycle assessments of lithium ion batteries for grid-scale stationary energy storage systems: End-of-life options and other issues
    Pellow, Matthew A.
    Ambrose, Hanjiro
    Mulvaney, Dustin
    Betita, Rick
    Shaw, Stephanie
    SUSTAINABLE MATERIALS AND TECHNOLOGIES, 2020, 23
  • [26] Assessing the life cycle cumulative energy demand and greenhouse gas emissions of lithium-ion batteries
    Zhao, Enoch
    Walker, Paul D.
    Surawski, Nic C.
    Bennett, Nick S.
    JOURNAL OF ENERGY STORAGE, 2021, 43
  • [27] The Environmental Impacts of Recycling Portable Lithium-Ion Batteries
    Boyden, Anna
    Soo, Vi Kie
    Doolan, Matthew
    23RD CIRP CONFERENCE ON LIFE CYCLE ENGINEERING, 2016, 48 : 188 - 193
  • [28] Environmental Impacts of Graphite Recycling from Spent Lithium-Ion Batteries Based on Life Cycle Assessment
    Rey, Irene
    Vallejo, Claudia
    Santiago, Gabriel
    Iturrondobeitia, Maider
    Lizundia, Erlantz
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2021, 9 (43): : 14488 - 14501
  • [29] Economic Assessment of Lithium-Ion Battery Storage Systems in the Nearly Zero Energy Building Environment
    Nousdilis, Angelos I.
    Kontis, Eleftherios O.
    Kryonidis, Georgios C.
    Christoforidis, Georgios C.
    Papagiannis, Grigoris K.
    2018 20TH INTERNATIONAL SYMPOSIUM ON ELECTRICAL APPARATUS AND TECHNOLOGIES (SIELA), 2018,
  • [30] Environmental impacts of small-scale hybrid energy systems: Coupling solar photovoltaics and lithium-ion batteries
    Uctug, Fehmi Gorkem
    Azapagic, Adisa
    SCIENCE OF THE TOTAL ENVIRONMENT, 2018, 643 : 1579 - 1589