Coordination Environment Engineering of Metal Centers in Coordination Polymers for Selective Carbon Dioxide Electroreduction toward Multicarbon Products

被引:44
作者
Wang, Juan [1 ]
Sun, Mingzi [2 ]
Xu, Hongming [1 ,3 ]
Hao, Fengkun [1 ]
Wa, Qingbo [1 ]
Su, Jianjun [1 ]
Zhou, Jingwen [1 ,4 ]
Wang, Yunhao [1 ]
Yu, Jinli [1 ]
Zhang, Penghui [5 ]
Ye, Ruquan [1 ]
Chu, Shengqi [6 ]
Huang, Bolong [2 ]
Shao, Minhua [3 ]
Fan, Zhanxi [1 ,4 ,7 ]
机构
[1] City Univ Hong Kong, Dept Chem, Hong Kong 999077, Peoples R China
[2] Hong Kong Polytech Univ, Dept Appl Biol & Chem Technol, Kowloon, Hong Kong 999077, Peoples R China
[3] Hong Kong Univ Sci & Technol, Dept Chem & Biol Engn, Hong Kong 999077, Peoples R China
[4] City Univ Hong Kong, Hong Kong Branch, Natl Precious Met Mat Engn Res Ctr NPMM, Hong Kong 999077, Peoples R China
[5] Zhejiang Univ, Coll Chem & Biol Engn, Hangzhou 310027, Peoples R China
[6] Chinese Acad Sci, Inst High Energy Phys, Beijing Synchrotron Radiat Facil, Beijing 100049, Peoples R China
[7] City Univ Hong Kong, Shenzhen Res Inst, Shenzhen 518057, Peoples R China
基金
中国国家自然科学基金;
关键词
carbon dioxide reductionreaction; electrocatalysis; coordination environmentengineering; metal centers; coordination polymers; ELECTROCHEMICAL CO2 REDUCTION; ORGANIC FRAMEWORK; ABSORPTION SPECTROSCOPY; CU; CATALYSTS; ELECTROLYSIS; SITES;
D O I
10.1021/acsnano.3c12389
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electrocatalytic carbon dioxide reduction reaction (CO2RR) toward value-added chemicals/fuels has offered a sustainable strategy to achieve a carbon-neutral energy cycle. However, it remains a great challenge to controllably and precisely regulate the coordination environment of active sites in catalysts for efficient generation of targeted products, especially the multicarbon (C2+) products. Herein we report the coordination environment engineering of metal centers in coordination polymers for efficient electroreduction of CO2 to C2+ products under neutral conditions. Significantly, the Cu coordination polymer with Cu-N2S2 coordination configuration (Cu-N-S) demonstrates superior Faradaic efficiencies of 61.2% and 82.2% for ethylene and C2+ products, respectively, compared to the selective formic acid generation on an analogous polymer with the Cu-I2S2 coordination mode (Cu-I-S). In situ studies reveal the balanced formation of atop and bridge *CO intermediates on Cu-N-S, promoting C-C coupling for C2+ production. Theoretical calculations suggest that coordination environment engineering can induce electronic modulations in Cu active sites, where the d-band center of Cu is upshifted in Cu-N-S with stronger selectivity to the C2+ products. Consequently, Cu-N-S displays a stronger reaction trend toward the generation of C2+ products, while Cu-I-S favors the formation of formic acid due to the suppression of C-C couplings for C2+ pathways with large energy barriers.
引用
收藏
页码:7192 / 7203
页数:12
相关论文
共 77 条
[1]   Aurophilic Interactions in [(L)AuCl]•••[(L′)AuCl] Dimers: Calibration by Experiment and Theory [J].
Andris, Erik ;
Andrikopoulos, Prokopis C. ;
Schulz, Jiri ;
Turek, Jan ;
Ruzicka, Ales ;
Roithova, Jana ;
Rulisek, Lubomir .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (06) :2316-2325
[2]   The role of in situ generated morphological motifs and Cu(i) species in C2+ product selectivity during CO2 pulsed electroreduction [J].
Aran-Ais, Rosa M. ;
Scholten, Fabian ;
Kunze, Sebastian ;
Rizo, Ruben ;
Roldan Cuenya, Beatriz .
NATURE ENERGY, 2020, 5 (04) :317-325
[3]   Potential- and Time-Dependent Dynamic Nature of an Oxide-Derived PdIn Nanocatalyst during Electrochemical CO2 Reduction [J].
Bagchi, Debabrata ;
Sarkar, Shreya ;
Singh, Ashutosh Kumar ;
Vinod, Chathakudath P. ;
Peter, Sebastian C. .
ACS NANO, 2022, 16 (04) :6185-6196
[4]   Construction of 3D copper-chitosan-gas diffusion layer electrode for highly efficient CO2 electrolysis to C2+ alcohols [J].
Bi, Jiahui ;
Li, Pengsong ;
Liu, Jiyuan ;
Jia, Shuaiqiang ;
Wang, Yong ;
Zhu, Qinggong ;
Liu, Zhimin ;
Han, Buxing .
NATURE COMMUNICATIONS, 2023, 14 (01)
[5]   Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels [J].
Birdja, Yuvraj Y. ;
Perez-Gallent, Elena ;
Figueiredo, Marta C. ;
Gottle, Adrien J. ;
Calle-Vallejo, Federico ;
Koper, Marc T. M. .
NATURE ENERGY, 2019, 4 (09) :732-745
[6]   Early Stages of Electrochemical Oxidation of Cu(111) and Polycrystalline Cu Surfaces Revealed by in Situ Raman Spectroscopy [J].
Bodappa, Nataraju ;
Su, Min ;
Zhao, Yu ;
Le, Jia-Bo ;
Yang, Wei-Min ;
Radjenovic, Petar ;
Dong, Jin-Chao ;
Cheng, Jun ;
Tian, Zhong-Qun ;
Li, Jian-Feng .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (31) :12192-12196
[7]   Insights on forming N,O-coordinated Cu single-atom catalysts for electrochemical reduction CO2 to methane [J].
Cai, Yanming ;
Fu, Jiaju ;
Zhou, Yang ;
Chang, Yu-Chung ;
Min, Qianhao ;
Zhu, Jun-Jie ;
Lin, Yuehe ;
Zhu, Wenlei .
NATURE COMMUNICATIONS, 2021, 12 (01)
[8]   Ethylene Selectivity in Electrocatalytic CO2 Reduction on Cu Nanomaterials: A Crystal Phase-Dependent Study [J].
Chen, Ye ;
Fan, Zhanxi ;
Wang, Jiong ;
Ling, Chongyi ;
Niu, Wenxin ;
Huang, Zhiqi ;
Liu, Guigao ;
Chen, Bo ;
Lai, Zhuangchai ;
Liu, Xiaozhi ;
Li, Bing ;
Zong, Yun ;
Gu, Lin ;
Wang, Jinlan ;
Wang, Xin ;
Zhang, Hua .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (29) :12760-12766
[9]   Isotropic and Anisotropic Growth of Metal-Organic Framework (MOF) on MOF: Logical Inference on MOF Structure Based on Growth Behavior and Morphological Feature [J].
Choi, Sora ;
Kim, Taeho ;
Ji, Hoyeon ;
Lee, Hee Jung ;
Oh, Moonhyun .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (43) :14434-14440
[10]   Controlling the Oxidation State of the Cu Electrode and Reaction Intermediates for Electrochemical CO2 Reduction to Ethylene [J].
Chou, Tsu-Chin ;
Chang, Chiao-Chun ;
Yu, Hung-Ling ;
Yu, Wen-Yueh ;
Dong, Chung-Li ;
Velasco-Velez, Juan Jesus ;
Chuang, Cheng-Hao ;
Chen, Li-Chyong ;
Lee, Jyh-Fu ;
Chen, Jin-Ming ;
Wu, Heng-Liang .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (06) :2857-2867