Maximum efficiency points of a proton-exchange membrane fuel cell system: Theory and experiments

被引:6
|
作者
Nurdin, Hendra I. [1 ]
Benmouna, Amel [2 ,3 ,4 ]
Zhu, Bin [1 ]
Chen, Jiayin [1 ]
Becherif, Mohamed [2 ]
Hissel, Daniel [2 ,5 ,6 ]
Fletcher, John [1 ]
机构
[1] UNSW Australia, Sch Elect Engn & Telecommun, Sydney, NSW 2052, Australia
[2] Univ Bourgogne Franche Comte, FEMTO ST Inst, CNRS, UTBM, F-90000 Belfort, France
[3] ESTA Belfort, Sch Business & Engn, F-90000 Belfort, France
[4] Univ Tenaga Nas, Dept Elect Engn, Kajang 43009, Selangor, Malaysia
[5] Univ Franche Comte, Belfort, France
[6] Inst Univ France IUF, Paris, France
关键词
Fuel cell; DC/DC converter; Efficiency; Maximum efficiency point tracking; TRACKING; ENHANCEMENT; PERFORMANCE; MODEL;
D O I
10.1016/j.apenergy.2024.122629
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this paper, a theoretical expression for the efficiency of a fuel cell system is derived. The studied system consists of a proton -exchange membrane fuel cell stack coupled at its output to a DC/DC boost converter. A fuel cell stack Larminie and Dicks model along with an efficiency curve for our boost converter are fitted using experimental data. One maximum efficiency point for the fuel cell stack coupled to the DC/DC power converter is shown and lies in the safe zone of the fuel cell stack. Experimental results on the fuel cell efficiency, DC/DC efficiency and their association on a test bench indicate a good agreement between the theoretical estimations and the experimentally obtained results at different values of the DC/DC converter output voltage. The results provide strong theoretical and experimental evidence for a unique maximum efficiency point for the fuel cell system and form a basis for developing maximum efficiency point tracking algorithms.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Modification effect of proton-exchange membrane on performance of a direct methanol fuel cell
    Okajima, K
    Furukawa, K
    Kaga, F
    Sudoh, M
    KAGAKU KOGAKU RONBUNSHU, 2003, 29 (02) : 170 - 173
  • [32] A reduced-dimension dynamic model of a proton-exchange membrane fuel cell
    Xu, Ling
    Hu, Zunyan
    Fang, Chuan
    Xu, Liangfei
    Li, Jianqiu
    Ouyang, Minggao
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2021, 45 (12) : 18002 - 18017
  • [33] Smart coating process of proton-exchange membrane for polymer electrolyte fuel cell
    Leu, Hoang-Jyh
    Chiu, Kuo-Feng
    Lin, Chiu-Yue
    APPLIED ENERGY, 2013, 112 : 1126 - 1130
  • [34] The Influence of Ink Formulation and Preparation on the Performance of Proton-Exchange Membrane Fuel Cell
    Turtayeva, Zarina
    Xu, Feina
    Dillet, Jerome
    Mozet, Kevin
    Peignier, Regis
    Celzard, Alain
    Maranzana, Gael
    ENERGIES, 2023, 16 (22)
  • [35] Dynamic Modeling of a Proton-Exchange Membrane Fuel Cell Using a Gaussian Approach
    Gonzalez-Castano, Catalina
    Lorente-Leyva, Leandro L.
    Alpala, Janeth
    Revelo-Fuelagan, Javier
    Peluffo-Ordonez, Diego H.
    Restrepo, Carlos
    MEMBRANES, 2021, 11 (12)
  • [36] Novel Grafted Nafion Membranes for Proton-Exchange Membrane Fuel Cell Applications
    Eldin, M. S. Mohy
    Elzatahry, A. A.
    El-Khatib, K. M.
    Hassan, E. A.
    El-Sabbah, M. M.
    Abu-Saied, M. A.
    JOURNAL OF APPLIED POLYMER SCIENCE, 2011, 119 (01) : 120 - 133
  • [37] ELECTROCATALYSIS OF FUEL-CELL REACTIONS AT PLATINUM PROTON-EXCHANGE MEMBRANE INTERFACE
    PAIK, WK
    TICIANELLI, EA
    SRINIVASAN, S
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1988, 135 (03) : C119 - C119
  • [38] Design of a Modern Proton-Exchange Membrane Fuel Cell Module for Engineering Education
    Smith, Jeremy Dylan
    Novy, Melissa
    2018 IEEE CONFERENCE ON TECHNOLOGIES FOR SUSTAINABILITY (SUSTECH), 2018, : 97 - 102
  • [39] Numerical study of a porous open channel for the proton-exchange membrane fuel cell
    Slawinski, Daniel
    Soszko, Michal
    Tokarz, Wojciech
    Glinski, Michal
    Bykuc, Sebastian
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (26) : 13087 - 13100