Pre-training with Augmentations for Efficient Transfer in Model-Based Reinforcement Learning

被引:0
|
作者
Esteves, Bernardo [1 ,2 ]
Vasco, Miguel [1 ,2 ]
Melo, Francisco S. [1 ,2 ]
机构
[1] INESC ID, Lisbon, Portugal
[2] Univ Lisbon, Inst Super Tecn, Lisbon, Portugal
来源
PROGRESS IN ARTIFICIAL INTELLIGENCE, EPIA 2023, PT I | 2023年 / 14115卷
关键词
Reinforcement learning; Transfer learning; Representation learning;
D O I
10.1007/978-3-031-49008-8_11
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work explores pre-training as a strategy to allow reinforcement learning (RL) algorithms to efficiently adapt to new (albeit similar) tasks. We argue for introducing variability during the pre-training phase, in the form of augmentations to the observations of the agent, to improve the sample efficiency of the fine-tuning stage. We categorize such variability in the form of perceptual, dynamic and semantic augmentations, which can be easily employed in standard pre-training methods. We perform extensive evaluations of our proposed augmentation scheme in model-based algorithms, across multiple scenarios of increasing complexity. The results consistently show that our augmentation scheme significantly improves the efficiency of the fine-tuning to novel tasks, outperforming other state-of-the-art pre-training approaches.
引用
收藏
页码:133 / 145
页数:13
相关论文
共 50 条
  • [11] A survey on model-based reinforcement learning
    Luo, Fan-Ming
    Xu, Tian
    Lai, Hang
    Chen, Xiong-Hui
    Zhang, Weinan
    Yu, Yang
    SCIENCE CHINA-INFORMATION SCIENCES, 2024, 67 (02)
  • [12] AN ADAPTER BASED PRE-TRAINING FOR EFFICIENT AND SCALABLE SELF-SUPERVISED SPEECH REPRESENTATION LEARNING
    Kessler, Samuel
    Thomas, Bethan
    Karout, Salah
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 3179 - 3183
  • [13] CDR-Detector: a chronic disease risk prediction model combining pre-training with deep reinforcement learning
    Lin, Shaofu
    Zhou, Shiwei
    Jiao, Han
    Wang, Mengzhen
    Yan, Haokang
    Dou, Peng
    Chen, Jianhui
    COMPLEX & INTELLIGENT SYSTEMS, 2025, 11 (01)
  • [14] An Online Reinforcement Learning Method for Multi-Zone Ventilation Control With Pre-Training
    Cui, Can
    Li, Chunxiao
    Li, Ming
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2023, 70 (07) : 7163 - 7172
  • [15] Geometric-Feature Representation Based Pre-Training Method for Reinforcement Learning of Peg-in-Hole Tasks
    Zang, Yajing
    Wang, Pengfei
    Zha, Fusheng
    Guo, Wei
    Ruan, Songlin
    Sun, Lining
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (06) : 3478 - 3485
  • [16] Model-based average reward reinforcement learning
    Tadepalli, P
    Ok, D
    ARTIFICIAL INTELLIGENCE, 1998, 100 (1-2) : 177 - 224
  • [17] Model-Based Reinforcement Learning in Robotics: A Survey
    Sun S.
    Lan X.
    Zhang H.
    Zheng N.
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2022, 35 (01): : 1 - 16
  • [18] Asynchronous Methods for Model-Based Reinforcement Learning
    Zhang, Yunzhi
    Clavera, Ignasi
    Tsai, Boren
    Abbeel, Pieter
    CONFERENCE ON ROBOT LEARNING, VOL 100, 2019, 100
  • [19] Model gradient: unified model and policy learning in model-based reinforcement learning
    Jia, Chengxing
    Zhang, Fuxiang
    Xu, Tian
    Pang, Jing-Cheng
    Zhang, Zongzhang
    Yu, Yang
    FRONTIERS OF COMPUTER SCIENCE, 2024, 18 (04)
  • [20] Model gradient: unified model and policy learning in model-based reinforcement learning
    Chengxing Jia
    Fuxiang Zhang
    Tian Xu
    Jing-Cheng Pang
    Zongzhang Zhang
    Yang Yu
    Frontiers of Computer Science, 2024, 18