Pre-training with Augmentations for Efficient Transfer in Model-Based Reinforcement Learning

被引:0
|
作者
Esteves, Bernardo [1 ,2 ]
Vasco, Miguel [1 ,2 ]
Melo, Francisco S. [1 ,2 ]
机构
[1] INESC ID, Lisbon, Portugal
[2] Univ Lisbon, Inst Super Tecn, Lisbon, Portugal
来源
PROGRESS IN ARTIFICIAL INTELLIGENCE, EPIA 2023, PT I | 2023年 / 14115卷
关键词
Reinforcement learning; Transfer learning; Representation learning;
D O I
10.1007/978-3-031-49008-8_11
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work explores pre-training as a strategy to allow reinforcement learning (RL) algorithms to efficiently adapt to new (albeit similar) tasks. We argue for introducing variability during the pre-training phase, in the form of augmentations to the observations of the agent, to improve the sample efficiency of the fine-tuning stage. We categorize such variability in the form of perceptual, dynamic and semantic augmentations, which can be easily employed in standard pre-training methods. We perform extensive evaluations of our proposed augmentation scheme in model-based algorithms, across multiple scenarios of increasing complexity. The results consistently show that our augmentation scheme significantly improves the efficiency of the fine-tuning to novel tasks, outperforming other state-of-the-art pre-training approaches.
引用
收藏
页码:133 / 145
页数:13
相关论文
共 50 条
  • [1] Model-Based Transfer Reinforcement Learning Based on Graphical Model Representations
    Sun, Yuewen
    Zhang, Kun
    Sun, Changyin
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (02) : 1035 - 1048
  • [2] Pre-training with asynchronous supervised learning for reinforcement learning based autonomous driving
    Wang, Yunpeng
    Zheng, Kunxian
    Tian, Daxin
    Duan, Xuting
    Zhou, Jianshan
    FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING, 2021, 22 (05) : 673 - 686
  • [3] Pre-training Framework for Improving Learning Speed of Reinforcement Learning based Autonomous Vehicles
    Kim, Jung-Jae
    Cha, Si-Ho
    Ryu, Minwoo
    Jo, Minho
    2019 INTERNATIONAL CONFERENCE ON ELECTRONICS, INFORMATION, AND COMMUNICATION (ICEIC), 2019, : 321 - 322
  • [4] Efficient hyperparameter optimization through model-based reinforcement learning
    Wu, Jia
    Chen, SenPeng
    Liu, XiYuan
    NEUROCOMPUTING, 2020, 409 : 381 - 393
  • [5] Pre-Training Acquisition Functions by Deep Reinforcement Learning for Fixed Budget Active Learning
    Taguchi, Yusuke
    Hino, Hideitsu
    Kameyama, Keisuke
    NEURAL PROCESSING LETTERS, 2021, 53 (03) : 1945 - 1962
  • [6] Pre-Training Acquisition Functions by Deep Reinforcement Learning for Fixed Budget Active Learning
    Yusuke Taguchi
    Hideitsu Hino
    Keisuke Kameyama
    Neural Processing Letters, 2021, 53 : 1945 - 1962
  • [7] Data-efficient model-based reinforcement learning with trajectory discrimination
    Qu, Tuo
    Duan, Fuqing
    Zhang, Junge
    Zhao, Bo
    Huang, Wenzhen
    COMPLEX & INTELLIGENT SYSTEMS, 2024, 10 (02) : 1927 - 1936
  • [8] Efficient state synchronisation in model-based testing through reinforcement learning
    Turker, Uraz Cengiz
    Hierons, Robert M.
    Mousavi, Mohammad Reza
    Tyukin, Ivan Y.
    2021 36TH IEEE/ACM INTERNATIONAL CONFERENCE ON AUTOMATED SOFTWARE ENGINEERING ASE 2021, 2021, : 368 - 380
  • [9] Efficient Neural Network Pruning Using Model-Based Reinforcement Learning
    Bencsik, Blanka
    Szemenyei, Marton
    2022 INTERNATIONAL SYMPOSIUM ON MEASUREMENT AND CONTROL IN ROBOTICS (ISMCR), 2022, : 130 - 137
  • [10] Data-efficient model-based reinforcement learning with trajectory discrimination
    Tuo Qu
    Fuqing Duan
    Junge Zhang
    Bo Zhao
    Wenzhen Huang
    Complex & Intelligent Systems, 2024, 10 : 1927 - 1936