Human-in-the-loop machine learning: Reconceptualizing the role of the user in interactive approaches

被引:6
|
作者
Gomez-Carmona, Oihane [1 ]
Casado-Mansilla, Diego [2 ]
Lopez-de-Ipina, Diego [2 ]
Garcia-Zubia, Javier [2 ]
机构
[1] Univ Deusto, Deustotech, Bilbao, Spain
[2] Univ Deusto, Fac Engn, Bilbao 48007, Spain
基金
欧盟地平线“2020”;
关键词
Interactive machine learning; Human-in-the-loop; Intelligent environments; Internet of things; Smart workplace; NEONATAL SLEEP; TRUST; INTERNET; ALGORITHMS; PEOPLE; COST;
D O I
10.1016/j.iot.2023.101048
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The rise of intelligent systems and smart spaces has opened up new opportunities for human- machine collaborations. Interactive Machine Learning (IML) contribute to fostering such collaborations. Nonetheless, IML solutions tend to overlook critical factors such as the timing, frequency and workload that drive this interaction and are vital to adapting these systems to users' goals and engagement. To address this gap, this work explores users' expectations towards IML solutions in the context of an interactive hydration monitoring system for the workplace, which represents a challenging environment to implement intelligent solutions that can collaborate with individuals. The proposed system involves users in the learning process by providing feedback on the success of detecting their drinking gestures and enabling them to contribute with additional examples of their data. A qualitative study was conducted to evaluate this use case, where participants completed specific tasks with varying levels of involvement. This study provides promising insights into the potential of placing the Human-in-the-Loop (HitL) to adapt and reconceptualize the users' role in interactive solutions, highlighting the importance of considering human factors in designing more effective and flexible collaborative systems between humans and machines.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Information Filtering Method for Twitter Streaming Data Using Human-in-the-Loop Machine Learning
    Suzuki, Yu
    Nakamura, Satoshi
    DATABASE AND EXPERT SYSTEMS APPLICATIONS (DEXA 2018), PT II, 2018, 11030 : 167 - 175
  • [32] Active Learning for Human-in-the-Loop Customs Inspection
    Kim, Sundong
    Mai, Tung-Duong
    Han, Sungwon
    Park, Sungwon
    Nguyen, D. K. Thi
    So, Jaechan
    Singh, Karandeep
    Cha, Meeyoung
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (12) : 12039 - 12052
  • [33] Interactive Scene Segmentation for Efficient Human-in-the-Loop Robot Manipulation
    Butler, Daniel J.
    Elliot, Sarah
    Cakmak, Maya
    2017 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2017, : 2572 - 2579
  • [34] Computational human performance modelling for human-in-the-Loop machine systems
    Kolivand, Hoshang
    Balas, Valentina E.
    Paul, Anand
    Ramachandran, Varatharajan
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2020, 39 (04) : 5350 - 5358
  • [35] Human-in-the-loop Reinforcement Learning for Emotion Recognition
    Tan, Swee Yang
    Yau, Kok-Lim Alvin
    2024 IEEE 14TH SYMPOSIUM ON COMPUTER APPLICATIONS & INDUSTRIAL ELECTRONICS, ISCAIE 2024, 2024, : 21 - 26
  • [36] Human-in-the-Loop Low-Shot Learning
    Wan, Sen
    Hou, Yimin
    Bao, Feng
    Ren, Zhiquan
    Dong, Yunfeng
    Dai, Qionghai
    Deng, Yue
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (07) : 3287 - 3292
  • [37] Human-in-the-Loop Wireless Communications: Machine Learning and Brain-Aware Resource Management
    Kasgari, Ali Taleb Zadeh
    Saad, Walid
    Debbah, Merouane
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2019, 67 (11) : 7727 - 7743
  • [38] Human-in-the-Loop Machine Learning to Increase Video Accessibility for Visually Impaired and Blind Users
    Yuksel, Beste F.
    Fazli, Pooyan
    Mathur, Umang
    Bisht, Vaishali
    Kim, Soo Jung
    Lee, Joshua Junhee
    Jin, Seung Jung
    Siu, Yue-Ting
    Miele, Joshua A.
    Yoon, Ilmi
    PROCEEDINGS OF THE 2020 ACM DESIGNING INTERACTIVE SYSTEMS CONFERENCE (DIS 2020), 2020, : 47 - 60
  • [39] Concept logic trees: enabling user interaction for transparent image classification and human-in-the-loop learning
    Rodriguez, David M.
    Cuellar, Manuel P.
    Morales, Diego P.
    APPLIED INTELLIGENCE, 2024, 54 (05) : 3667 - 3679
  • [40] Concept logic trees: enabling user interaction for transparent image classification and human-in-the-loop learning
    David M. Rodríguez
    Manuel P. Cuéllar
    Diego P. Morales
    Applied Intelligence, 2024, 54 : 3667 - 3679