Overexpression of BvNHX1, a novel tonoplast Na+/H+ antiporter gene from sugar beet (Betavulgaris), confers enhanced salt tolerance in transgenic tobacco

被引:2
|
作者
Zhang, Xin-Miao [1 ]
Wu, Guo-Qiang [1 ]
Wei, Ming [1 ]
Kang, Hong-Xia [1 ]
机构
[1] Lanzhou Univ Technol, Sch Life Sci & Engn, Lanzhou 730050, Peoples R China
基金
中国国家自然科学基金;
关键词
Tonoplast Na+/H+ antiporter; Salt tolerance; Sugar beet; Ion homeostasis; Transgenic tobacco; ABIOTIC STRESS TOLERANCE; BETA-VULGARIS; SALINITY TOLERANCE; ECTOPIC EXPRESSION; OSMOTIC-STRESS; IMPROVES SALT; PLANT; ARABIDOPSIS; PROLINE; ACID;
D O I
10.1007/s13562-023-00868-8
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Salinity is one of the major environmental factors that limit the plant growth and crop productivity worldwide. Tonoplast Na+/H+ transporters (NHXs) play crucial roles in regulating the intracellular Na+/K+ and pH homoeostasis, which is essential for salt tolerance and development of plants. In the present study, a novel gene BvNHX1 encoding tonoplast Na+/H+ antiporter was isolated in natrophilic crop sugar beet (Betavulgaris) and functionally characterized in tobacco (Nicotianatabacum) plants to assess the behavior of the transgenic organisms in the response to salt stress. The results showed that overexpression of BvNHX1 significantly enhanced salt tolerance in transgenic tobacco plants compared with wild-type (WT) plants. The seed germination, root length, plant height, and fresh and dry weights in transgenic plants were significantly higher than those in WT plants under salt stresses. The contents of leaf relative water, chlorophyll, proline, soluble sugars, and soluble proteins were significantly higher as compared with WT plants, while malondialdehyde (MDA) contents were significantly lower than those of WT plants under salt stresses. Na+ and K+ contents both in shoots and roots of transgenic plants were significantly higher than those of WT plants, and transgenic plants maintained a balanced K+/Na+ ratio under saline conditions. Taken together, these results suggested that overexpression of BvNHX1 reduced damage to cell membrane by reducing osmotic potential of cells, and maintaining relative water and chlorophyll contents of leaves, and finally improved salt tolerance in transgenic tobacco plants.
引用
收藏
页码:211 / 223
页数:13
相关论文
共 50 条
  • [31] Pennisetum glaucum Na+/H+ antiporter confers high level of salinity tolerance in transgenic Brassica juncea
    Rajagopal, Divya
    Agarwal, Pradeep
    Tyagi, Wricha
    Singla-Pareek, Sneh L.
    Reddy, M. K.
    Sopory, S. K.
    MOLECULAR BREEDING, 2007, 19 (02) : 137 - 151
  • [32] Pennisetum glaucum Na+/H+ antiporter confers high level of salinity tolerance in transgenic Brassica juncea
    Divya Rajagopal
    Pradeep Agarwal
    Wricha Tyagi
    Sneh L. Singla-Pareek
    M. K. Reddy
    S. K. Sopory
    Molecular Breeding, 2007, 19 : 137 - 151
  • [33] Overexpression of AeNHX1, a root-specific vacuolar Na+/H+ antiporter from Agropyron elongatum, confers salt tolerance to Arabidopsis and Festuca plants
    Wei Hua Qiao
    Xiang Yu Zhao
    Wei Li
    Yan Luo
    Xian Sheng Zhang
    Plant Cell Reports, 2007, 26 : 1663 - 1672
  • [34] Overexpression of AeNHX1, a root-specific vacuolar Na+/H+ antiporter from Agropyron elongatum, confers salt tolerance to Arabidopsis and Festuca plants
    Qiao, Wei Hua
    Zhao, Xiang Yu
    Li, Wei
    Luo, Yan
    Zhang, Xian Sheng
    PLANT CELL REPORTS, 2007, 26 (09) : 1663 - 1672
  • [35] GhSOS1, a plasma membrane Na+/H+ antiporter gene from upland cotton, enhances salt tolerance in transgenic Arabidopsis thaliana
    Chen, Xiugui
    Lu, Xuke
    Shu, Na
    Wang, Delong
    Wang, Shuai
    Wang, Junjuan
    Guo, Lixue
    Guo, Xiaoning
    Fan, Weili
    Lin, Zhongxu
    Ye, Wuwei
    PLOS ONE, 2017, 12 (07):
  • [36] Salt tolerance conferred by overexpression of Arabidopsis vacuolar Na+/H+ antiporter gene AtNHX1 in common buckwheat (Fagopyrum esculentum)
    Li-Hong Chen
    Bo Zhang
    Zi-Qin Xu
    Transgenic Research, 2008, 17
  • [37] Overexpression of a Malus vacuolar Na+/H+ antiporter gene (MdNHX1) in apple rootstock M.26 and its influence on salt tolerance
    Li, Yonghong
    Zhang, Yanzi
    Feng, Fengjuan
    Liang, Dong
    Cheng, Lailiang
    Ma, Fengwang
    Shi, Shouguo
    PLANT CELL TISSUE AND ORGAN CULTURE, 2010, 102 (03) : 337 - 345
  • [38] Salt tolerance conferred by overexpression of Arabidopsis vacuolar Na+/H+ antiporter gene AtNHX1 in common buckwheat (Fagopyrum esculentum)
    Chen, Li-Hong
    Zhang, Bo
    Xu, Zi-Qin
    TRANSGENIC RESEARCH, 2008, 17 (01) : 121 - 132
  • [39] Salicornia europaea L. Na+/H+ antiporter gene improves salt tolerance in transgenic alfalfa (Medicago sativa L.)
    Zhang, L. Q.
    Niu, Y. D.
    Huridu, H.
    Hao, J. F.
    Qi, Z.
    Hasi, A.
    GENETICS AND MOLECULAR RESEARCH, 2014, 13 (03) : 5350 - 5360
  • [40] Genome-Wide Identification of Na+/H+ Antiporter (NHX) Genes in Sugar Beet (Beta vulgaris L.) and Their Regulated Expression under Salt Stress
    Wu, Guo-Qiang
    Wang, Jin-Long
    Li, Shan-Jia
    GENES, 2019, 10 (05):