Overexpression of BvNHX1, a novel tonoplast Na+/H+ antiporter gene from sugar beet (Betavulgaris), confers enhanced salt tolerance in transgenic tobacco

被引:2
|
作者
Zhang, Xin-Miao [1 ]
Wu, Guo-Qiang [1 ]
Wei, Ming [1 ]
Kang, Hong-Xia [1 ]
机构
[1] Lanzhou Univ Technol, Sch Life Sci & Engn, Lanzhou 730050, Peoples R China
基金
中国国家自然科学基金;
关键词
Tonoplast Na+/H+ antiporter; Salt tolerance; Sugar beet; Ion homeostasis; Transgenic tobacco; ABIOTIC STRESS TOLERANCE; BETA-VULGARIS; SALINITY TOLERANCE; ECTOPIC EXPRESSION; OSMOTIC-STRESS; IMPROVES SALT; PLANT; ARABIDOPSIS; PROLINE; ACID;
D O I
10.1007/s13562-023-00868-8
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Salinity is one of the major environmental factors that limit the plant growth and crop productivity worldwide. Tonoplast Na+/H+ transporters (NHXs) play crucial roles in regulating the intracellular Na+/K+ and pH homoeostasis, which is essential for salt tolerance and development of plants. In the present study, a novel gene BvNHX1 encoding tonoplast Na+/H+ antiporter was isolated in natrophilic crop sugar beet (Betavulgaris) and functionally characterized in tobacco (Nicotianatabacum) plants to assess the behavior of the transgenic organisms in the response to salt stress. The results showed that overexpression of BvNHX1 significantly enhanced salt tolerance in transgenic tobacco plants compared with wild-type (WT) plants. The seed germination, root length, plant height, and fresh and dry weights in transgenic plants were significantly higher than those in WT plants under salt stresses. The contents of leaf relative water, chlorophyll, proline, soluble sugars, and soluble proteins were significantly higher as compared with WT plants, while malondialdehyde (MDA) contents were significantly lower than those of WT plants under salt stresses. Na+ and K+ contents both in shoots and roots of transgenic plants were significantly higher than those of WT plants, and transgenic plants maintained a balanced K+/Na+ ratio under saline conditions. Taken together, these results suggested that overexpression of BvNHX1 reduced damage to cell membrane by reducing osmotic potential of cells, and maintaining relative water and chlorophyll contents of leaves, and finally improved salt tolerance in transgenic tobacco plants.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Overexpression of Iris lactea tonoplast Na+/H+ antiporter gene IlNHX confers improved salt tolerance in tobacco
    Guo, Q.
    Tian, X. X.
    Mao, P. C.
    Meng, L.
    BIOLOGIA PLANTARUM, 2020, 64 : 50 - 57
  • [2] The novel Na+/H+ antiporter gene SpNHX1 from Sesuvium portulacastrum confers enhanced salt tolerance to transgenic yeast
    Yang Zhou
    Chenglong Yang
    Yanping Hu
    Xiaochang Yin
    Ruimei Li
    Shaoping Fu
    Baibi Zhu
    Jianchun Guo
    Xingyu Jiang
    Acta Physiologiae Plantarum, 2018, 40
  • [3] The novel Na+/H+ antiporter gene SpNHX1 from Sesuvium portulacastrum confers enhanced salt tolerance to transgenic yeast
    Zhou, Yang
    Yang, Chenglong
    Hu, Yanping
    Yin, Xiaochang
    Li, Ruimei
    Fu, Shaoping
    Zhu, Baibi
    Guo, Jianchun
    Jiang, Xingyu
    ACTA PHYSIOLOGIAE PLANTARUM, 2018, 40 (03)
  • [4] Overexpression of the Na+/H+ antiporter gene from Suaeda salsa confers cold and salt tolerance to transgenic Arabidopsis thaliana
    Li, Jinyao
    Jiang, Gangqiang
    Huang, Ping
    Ma, Ji
    Zhang, Fuchun
    PLANT CELL TISSUE AND ORGAN CULTURE, 2007, 90 (01) : 41 - 48
  • [5] Overexpression of the Na+/H+ antiporter gene from Suaeda salsa confers cold and salt tolerance to transgenic Arabidopsis thaliana
    Jinyao Li
    Gangqiang Jiang
    Ping Huang
    Ji Ma
    Fuchun Zhang
    Plant Cell, Tissue and Organ Culture, 2007, 90
  • [6] A novel tonoplast Na+/H+ antiporter gene from date palm (PdNHX6) confers enhanced salt tolerance response in Arabidopsis
    Al-Harrasi, Ibtisam
    Jana, Gerry Aplang
    Patankar, Himanshu, V
    Al-Yahyai, Rashid
    Rajappa, Sivamathini
    Kumar, Prakash P.
    Yaish, Mahmoud W.
    PLANT CELL REPORTS, 2020, 39 (08) : 1079 - 1093
  • [7] A novel tonoplast Na+/H+ antiporter gene from date palm (PdNHX6) confers enhanced salt tolerance response in Arabidopsis
    Ibtisam Al-Harrasi
    Gerry Aplang Jana
    Himanshu V. Patankar
    Rashid Al-Yahyai
    Sivamathini Rajappa
    Prakash P. Kumar
    Mahmoud W. Yaish
    Plant Cell Reports, 2020, 39 : 1079 - 1093
  • [8] Overexpression of a tonoplast Na+/H+ antiporter from the halophytic shrub Nitraria sibirica improved salt tolerance and root development in transgenic poplar
    Geng, Xin
    Chen, Shouye
    Yilan, E.
    Zhang, Wenbo
    Mao, Huiping
    Qiqige, Alatan
    Wang, Yingchun
    Qi, Zhi
    Lin, Xiaofei
    TREE GENETICS & GENOMES, 2020, 16 (06)
  • [9] Overexpression of a tonoplast Na+/H+ antiporter from the halophytic shrub Nitraria sibirica improved salt tolerance and root development in transgenic poplar
    Xin Geng
    Shouye Chen
    E. Yilan
    Wenbo Zhang
    Huiping Mao
    Alatan qiqige
    Yingchun Wang
    Zhi Qi
    Xiaofei Lin
    Tree Genetics & Genomes, 2020, 16
  • [10] Introduction of a Na+/H+ antiporter gene from Atriplex gmelini confers salt tolerance to rice
    Ohta, M
    Hayashi, Y
    Nakashima, A
    Hamada, A
    Tanaka, A
    Nakamura, T
    Hayakawa, T
    FEBS LETTERS, 2002, 532 (03) : 279 - 282