Research on texture images and radiomics in urology: a review of urological MR imaging applications

被引:0
作者
Valeri, Antoine [1 ,2 ,3 ,4 ,5 ]
Nguyen, Truong An [1 ,2 ,3 ]
机构
[1] CHU Brest, Urol Dept, Brest, France
[2] Univ Brest, Fac Med & Sci Sante, Brest, France
[3] CHU Brest, LaTIM, INSERM, UMR 1101, Brest, France
[4] CeRePP, Paris, France
[5] Univ Hosp Brest, Urol Dept, Blvd Tanguy Prigent, F-29200 Brest, France
关键词
artificial intelligence; kidney cancer; MRI; prostate cancer; radiomics; PROSTATE-CANCER; RADIOGENOMICS; PREDICTION; MANAGEMENT;
D O I
10.1097/MOU.0000000000001131
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
Purpose of reviewTumor volume and heterogenicity are associated with diagnosis and prognosis of urological cancers, and assessed by conventional imaging. Quantitative imaging, Radiomics, using advanced mathematical analysis may contain information imperceptible to the human eye, and may identify imaging-based biomarkers, a new field of research for individualized medicine. This review summarizes the recent literature on radiomics in kidney and prostate cancers and the future perspectives. Recent findings Radiomics studies have been developed and showed promising results in diagnosis, in characterization, prognosis, treatment planning and recurrence prediction in kidney tumors and prostate cancer, but its use in guiding clinical decision-making remains limited at present due to several limitations including lack of external validations in most studies, lack of prospective studies and technical standardization. Summary Future challenges, besides developing prospective and validated studies, include automated segmentation using artificial intelligence deep learning networks and hybrid radiomics integrating clinical data, combining imaging modalities and genomic features. It is anticipated that these improvements may allow identify these noninvasive, imaging-based biomarkers, to enhance precise diagnosis, improve decision-making and guide tailored treatment.
引用
收藏
页码:428 / 436
页数:9
相关论文
共 43 条
[1]   Predicting Model of Biochemical Recurrence of Prostate Carcinoma (PCa-BCR) Using MR Perfusion-Weighted Imaging-Based Radiomics [J].
An, Peng ;
Lin, Yong ;
Hu, Yan ;
Qin, Ping ;
Ye, YingJian ;
Gu, Weiping ;
Li, Xiumei ;
Song, Ping ;
Feng, Guoyan .
TECHNOLOGY IN CANCER RESEARCH & TREATMENT, 2023, 22
[2]   An MRI-based radiomics model to predict clear cell renal cell carcinoma growth rate classes in patients with von Hippel-Lindau syndrome [J].
Anari, Pouria Yazdian ;
Lay, Nathan ;
Gopal, Nikhil ;
Chaurasia, Aditi ;
Samimi, Safa ;
Harmon, Stephanie ;
Firouzabadi, Fatemeh Dehghani ;
Merino, Maria J. ;
Wakim, Paul ;
Turkbey, Evrim ;
Jones, Elizabeth C. ;
Ball, Mark W. ;
Turkbey, Baris ;
Linehan, W. Marston ;
Malayeri, Ashkan A. .
ABDOMINAL RADIOLOGY, 2022, 47 (10) :3554-3562
[3]   Multiparametric Magnetic Resonance Imaging-Based Peritumoral Radiomics for Preoperative Prediction of the Presence of Extracapsular Extension With Prostate Cancer [J].
Bai, Honglin ;
Xia, Wei ;
Ji, Xuefu ;
He, Dong ;
Zhao, Xingyu ;
Bao, Jie ;
Zhou, Jian ;
Wei, Xuedong ;
Huang, Yuhua ;
Li, Qiong ;
Gao, Xin .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2021, 54 (04) :1222-1230
[4]   Development of a Radiomic-Based Model Predicting Lymph Node Involvement in Prostate Cancer Patients [J].
Bourbonne, Vincent ;
Jaouen, Vincent ;
Nguyen, Truong An ;
Tissot, Valentin ;
Doucet, Laurent ;
Hatt, Mathieu ;
Visvikis, Dimitris ;
Pradier, Olivier ;
Valeri, Antoine ;
Fournier, Georges ;
Schick, Ulrike .
CANCERS, 2021, 13 (22)
[5]   External Validation of an MRI-Derived Radiomics Model to Predict Biochemical Recurrence after Surgery for High-Risk Prostate Cancer [J].
Bourbonne, Vincent ;
Fournier, Georges ;
Vallieres, Martin ;
Lucia, Francois ;
Doucet, Laurent ;
Tissot, Valentin ;
Cuvelier, Gilles ;
Hue, Stephane ;
Du, Henri Le Penn ;
Perdriel, Luc ;
Bertrand, Nicolas ;
Staroz, Frederic ;
Visvikis, Dimitris ;
Pradier, Olivier ;
Hatt, Mathieu ;
Schick, Ulrike .
CANCERS, 2020, 12 (04)
[6]   A Multi-Center, Multi-Vendor Study to Evaluate the Generalizability of a Radiomics Model for Classifying Prostate cancer: High Grade vs. Low Grade [J].
Castillo T., Jose M. ;
Starmans, Martijn P. A. ;
Arif, Muhammad ;
Niessen, Wiro J. ;
Klein, Stefan ;
Bangma, Chris H. ;
Schoots, Ivo G. ;
Veenland, Jifke F. .
DIAGNOSTICS, 2021, 11 (02)
[7]   Detecting localised prostate cancer using radiomic features in PSMA PET and multiparametric MRI for biologically targeted radiation therapy [J].
Chan, Tsz Him ;
Haworth, Annette ;
Wang, Alan ;
Osanlouy, Mahyar ;
Williams, Scott ;
Mitchell, Catherine ;
Hofman, Michael S. ;
Hicks, Rodney J. ;
Murphy, Declan G. ;
Reynolds, Hayley M. .
EJNMMI RESEARCH, 2023, 13 (01)
[8]   Avoiding Unnecessary Systematic Biopsy in Clinically Significant Prostate Cancer: Comparison Between MRI-Based Radiomics Model and PI-RADS Category [J].
Cheng, Xueqing ;
Chen, Yuntian ;
Xu, Hui ;
Ye, Lei ;
Tong, Shun ;
Li, Haixia ;
Zhang, Tianjing ;
Tian, Song ;
Qi, Jin ;
Zeng, Hao ;
Yao, Jin ;
Song, Bin .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2023, 57 (02) :578-586
[9]   Exploring the Use of Artificial Intelligence in the Management of Prostate Cancer [J].
Chu, Timothy N. N. ;
Wong, Elyssa Y. Y. ;
Ma, Runzhuo ;
Yang, Cherine H. H. ;
Dalieh, Istabraq S. ;
Hung, Andrew J. J. .
CURRENT UROLOGY REPORTS, 2023, 24 (05) :231-240
[10]   MRI index lesion radiomics and machine learning for detection of extraprostatic extension of disease: a multicenter study [J].
Cuocolo, Renato ;
Stanzione, Arnaldo ;
Faletti, Riccardo ;
Gatti, Marco ;
Calleris, Giorgio ;
Fornari, Alberto ;
Gentile, Francesco ;
Motta, Aurelio ;
Dell'Aversana, Serena ;
Creta, Massimiliano ;
Longo, Nicola ;
Gontero, Paolo ;
Cirillo, Stefano ;
Fonio, Paolo ;
Imbriaco, Massimo .
EUROPEAN RADIOLOGY, 2021, 31 (10) :7575-7583