Order-Disorder Phase Transition and Ionic Conductivity in a Li2B12H12 Solid Electrolyte

被引:7
作者
Maltsev, Alexey P. [1 ]
Chepkasov, Ilya V. [1 ]
Oganov, Artem R. [1 ]
机构
[1] Skolkovo Inst Sci & Technol, Moscow 121205, Russia
基金
俄罗斯科学基金会;
关键词
density functional theory; machine learning interatomicpotential; solid electrolyte; phase transition; ionic conductivity; SODIUM SUPERIONIC CONDUCTION; LITHIUM SECONDARY BATTERIES; TOTAL-ENERGY CALCULATIONS; MOLECULAR-DYNAMICS; LICOO2; ELECTRODE; CHALLENGES; DIFFUSION; STORAGE;
D O I
10.1021/acsami.3c07242
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Temperature-induced phase transitions and ionic conductivities of Li2B12H12 and LiCB11H12 were simulated with the use of machine learning interatomic potentials based on van der Waals-corrected density functional theory (rev-vdW-DF2 functional). The simulated temperature of order-disorder phase transition, lattice parameters, diffusion, ionic conductivity, and activation energies are in good agreement with experimental data. Our simulations of Li2B12H12 uncover the importance of the reorientational motion of the [B12H12](2-) anion. In the ordered alpha-phase (T < 625 K), these anions have well-defined orientations, while in the disordered ss-phase (T > 625 K), their orientations are random. In vacancy-rich systems, its complete rotation was observed, while in the ideal crystal, the anions display limited vabrational motion, indicating the static nature of the phase transition without dynamic disordering. The use of machine learning interatomic potentials has allowed us to study large systems (>2000 atoms) in long (nanosecond-scale) molecular dynamics runs with ab initio quality.
引用
收藏
页码:42511 / 42519
页数:9
相关论文
共 67 条
[1]   First-principles study of closo-dodecaborates M2B12H12 (M = Li, Na, K) as solid-state electrolyte materials [J].
Akrouchi, A. ;
Benzidi, H. ;
Al-Shami, A. ;
El Kenz, A. ;
Benyoussef, A. ;
El Kharbachi, A. ;
Mounkachi, O. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2021, 23 (47) :27014-27023
[2]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[3]   IMPROVED TETRAHEDRON METHOD FOR BRILLOUIN-ZONE INTEGRATIONS [J].
BLOCHL, PE ;
JEPSEN, O ;
ANDERSEN, OK .
PHYSICAL REVIEW B, 1994, 49 (23) :16223-16233
[4]   Sodium and sodium-ion energy storage batteries [J].
Ellis, Brian L. ;
Nazar, Linda F. .
CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2012, 16 (04) :168-177
[5]   THE NOSE-HOOVER THERMOSTAT [J].
EVANS, DJ ;
HOLIAN, BL .
JOURNAL OF CHEMICAL PHYSICS, 1985, 83 (08) :4069-4074
[6]   Semiempirical GGA-type density functional constructed with a long-range dispersion correction [J].
Grimme, Stefan .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2006, 27 (15) :1787-1799
[7]   Accelerating high-throughput searches for new alloys with active learning of interatomic potentials [J].
Gubaev, Konstantin ;
Podryabinkin, Evgeny, V ;
Hart, Gus L. W. ;
Shapeev, Alexander, V .
COMPUTATIONAL MATERIALS SCIENCE, 2019, 156 :148-156
[8]   Materials simulations using VASP - a quantum perspective to materials science [J].
Hafner, J. .
COMPUTER PHYSICS COMMUNICATIONS, 2007, 177 (1-2) :6-13
[9]   van der Waals density functional made accurate [J].
Hamada, Ikutaro .
PHYSICAL REVIEW B, 2014, 89 (12)
[10]   Synthesis of a Bimetallic Dodecaborate LiNaB12H12 with Outstanding Superionic Conductivity [J].
He, Liqing ;
Li, Hai-Wen ;
Nakajima, Hironori ;
Tumanov, Nikolay ;
Filinchuk, Yaroslav ;
Hwang, Son-Jong ;
Sharma, Manish ;
Hagemann, Hans ;
Akiba, Etsuo .
CHEMISTRY OF MATERIALS, 2015, 27 (16) :5483-5486