Uncertainty quantification and attention-aware fusion guided multi-modal MR brain tumor segmentation

被引:6
|
作者
Zhou, Tongxue [1 ]
Zhu, Shan [2 ]
机构
[1] Hangzhou Normal Univ, Sch Informat Sci & Technol, Hangzhou 311121, Peoples R China
[2] Hangzhou Normal Univ, Sch Life & Environm Sci, Hangzhou 311121, Peoples R China
基金
中国国家自然科学基金;
关键词
Brain tumor segmentation; Uncertainty quantification; Feature fusion; Multi-modality; Deep learning; MECHANISM;
D O I
10.1016/j.compbiomed.2023.107142
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Brain tumor is one of the most aggressive cancers in the world, accurate brain tumor segmentation plays a critical role in clinical diagnosis and treatment planning. Although deep learning models have presented remarkable success in medical segmentation, they can only obtain the segmentation map without capturing the segmentation uncertainty. To achieve accurate and safe clinical results, it is necessary to produce extra uncertainty maps to assist the subsequent segmentation revision. To this end, we propose to exploit the uncertainty quantification in the deep learning model and apply it to multi-modal brain tumor segmentation. In addition, we develop an effective attention-aware multi-modal fusion method to learn the complimentary feature information from the multiple MR modalities. First, a multi-encoder-based 3D U-Net is proposed to obtain the initial segmentation results. Then, an estimated Bayesian model is presented to measure the uncertainty of the initial segmentation results. Finally, the obtained uncertainty maps are integrated into a deep learning-based segmentation network, serving as an additional constraint information to further refine the segmentation results. The proposed network is evaluated on publicly available BraTS 2018 and BraTS 2019 datasets. The experimental results demonstrate that the proposed method outperforms the previous state-of-theart methods on Dice score, Hausdorff distance and Sensitivity metrics. Furthermore, the proposed components could be easily applied to other network architectures and other computer vision fields.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Synthetic MRI in action: A novel framework in data augmentation strategies for robust multi-modal brain tumor segmentation
    Pani, Kaliprasad
    Chawla, Indu
    Computers in Biology and Medicine, 2024, 183
  • [42] Improved Global U-Net applied for multi-modal brain tumor fuzzy segmentation
    Mishra, Annu
    Gupta, Pankaj
    Tewari, Peeyush
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2024, 27 (03) : 547 - 561
  • [43] M2GCNet: Multi-Modal Graph Convolution Network for Precise Brain Tumor Segmentation Across Multiple MRI Sequences
    Zhou, Tongxue
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 4896 - 4910
  • [44] Segmentation of Multi-Modal MRI Brain Tumor Sub-Regions Using Deep Learning
    Srinivas, B.
    Rao, Gottapu Sasibhushana
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2020, 15 (04) : 1899 - 1909
  • [45] Multi-modal Brain Tumor Segmentation Based on Self-organizing Active Contour Model
    Liu, Rui
    Cheng, Jian
    Zhu, Xiaoya
    Liang, Hao
    Chen, Zezhou
    PATTERN RECOGNITION (CCPR 2016), PT II, 2016, 663 : 486 - 498
  • [46] Learning Dynamic Convolutions for Multi-modal 3D MRI Brain Tumor Segmentation
    Yang, Qiushi
    Yuan, Yixuan
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2020), PT II, 2021, 12659 : 441 - 451
  • [47] Segmentation of Multi-Modal MRI Brain Tumor Sub-Regions Using Deep Learning
    B. Srinivas
    Gottapu Sasibhushana Rao
    Journal of Electrical Engineering & Technology, 2020, 15 : 1899 - 1909
  • [48] Multi-modal disease segmentation with continual learning and adaptive decision fusion
    Xu, Xu
    Chen, Junxin
    Thakur, Dipanwita
    Hong, Duo
    INFORMATION FUSION, 2025, 118
  • [49] Attention-based Fusion Network for Breast Cancer Segmentation and Classification Using Multi-modal Ultrasound Images
    Cho, Yoonjae
    Misra, Sampa
    Managuli, Ravi
    Barr, Richard G.
    Lee, Jeongmin
    Kim, Chulhong
    ULTRASOUND IN MEDICINE AND BIOLOGY, 2025, 51 (03) : 568 - 577
  • [50] Prediction of brain tumor recurrence location based on multi-modal fusion and nonlinear correlation learning
    Zhou, Tongxue
    Noeuveglise, Alexandra
    Modzelewski, Romain
    Ghazouani, Fethi
    Thureau, Sebastien
    Fontanilles, Maxime
    Ruan, Su
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2023, 106