Scaling laws for the energy transfer in space plasma turbulence

被引:61
作者
Marino, Raffaele [1 ]
Sorriso-Valvo, Luca [2 ,3 ]
机构
[1] Univ Lyon, Univ Claude Bernard Lyon 1, CNRS, UMR 5509,Ecole Cent Lyon,INSA Lyon,Lab Mecan Fluid, F-69134 Ecully, France
[2] Ist Sci & Tecnol Plasmi, CNR, ISTP, Via Amendola 122-D, I-70126 Bari, Italy
[3] Swedish Inst Space Phys IRF, Angstrom Lab, Lagerhyddsvagen 1, SE-75121 Uppsala, Sweden
来源
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS | 2023年 / 1006卷
关键词
Space plasmas; Turbulence; Energy transfer; Magnetohydrodynamics; Scaling laws; Solar wind; Heliosphere; Sun; Waves; SOLAR-WIND TURBULENCE; PROBABILITY-DISTRIBUTION FUNCTIONS; KELVIN-HELMHOLTZ INSTABILITY; HELIOSPHERIC MAGNETIC-FIELD; ALFVEN WAVES; HALL MAGNETOHYDRODYNAMICS; HYDROMAGNETIC TURBULENCE; PARAMETRIC-INSTABILITY; ISOTROPIC TURBULENCE; CLUSTER OBSERVATIONS;
D O I
10.1016/j.physrep.2022.12.001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
One characteristic trait of space plasmas is the multi-scale dynamics resulting from non-linear transfers and conversions of various forms of energy. Routinely evidenced in a range from the large-scale solar structures down to the characteristic scales of ions and electrons, turbulence is a major cross-scale energy transfer mechanism in space plasmas. At intermediate scales, the fate of the energy in the outer space is mainly determined by the interplay of turbulent motions and propagating waves. More mechanisms are advocated to account for the transfer and conversion of energy, including magnetic reconnection, emission of radiation and particle energization, all contributing to make the dynamical state of solar and heliospheric plasmas difficult to predict. The characterization of the energy transfer in space plasmas benefited from numerous robotic missions. However, together with breakthrough technologies, novel theoretical developments and methodologies for the analysis of data played a crucial role in advancing our understanding of how energy is transferred across the scales in the space. In recent decades, several scaling laws were obtained providing effective ways to model the energy flux in turbulent plasmas. Under certain assumptions, these relations enabled to utilize reduced knowledge (in terms of degrees of freedom) of the fields from spacecraft observations to obtain direct estimates of the energy transfer rates (and not only) in the interplanetary space, also in the proximity of the Sun and planets. Starting from the first third-order exact law for the magnetohydrodynamics by Politano and Pouquet (1998), we present a detailed review of the main scaling laws for the energy transfer in plasma turbulence and their application, presenting theoretical, numerical and observational milestones of what has become one of the main approaches for the characterization of turbulent dynamics and energetics in space plasmas.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 144
页数:144
相关论文
共 559 条
[1]   Global distribution of crustal magnetization discovered by the Mars Global Surveyor MAG/ER experiment [J].
Acuña, MH ;
Connerney, JEP ;
Ness, NF ;
Lin, RP ;
Mitchell, D ;
Carlson, CW ;
McFadden, J ;
Anderson, KA ;
Rème, H ;
Mazelle, C ;
Vignes, D ;
Wasilewski, P ;
Cloutier, P .
SCIENCE, 1999, 284 (5415) :790-793
[2]   Magnetic field and plasma observations at Mars:: Initial results of the Mars global surveyor mission [J].
Acuña, MH ;
Connerney, JEP ;
Wasilewski, P ;
Lin, RP ;
Anderson, KA ;
Carlson, CW ;
McFadden, J ;
Curtis, DW ;
Mitchell, D ;
Reme, H ;
Mazelle, C ;
Sauvaud, JA ;
d'Uston, C ;
Cros, A ;
Medale, JL ;
Bauer, SJ ;
Cloutier, P ;
Mayhew, M ;
Winterhalter, D ;
Ness, NF .
SCIENCE, 1998, 279 (5357) :1676-1680
[3]   The transport of low-frequency turbulence in the super-Alfvenic solar wind [J].
Adhikari, L. ;
Zank, G. P. ;
Bruno, R. ;
Telloni, D. ;
Hunana, P. ;
Dosch, A. ;
Marino, R. ;
Hu, Q. .
14TH ANNUAL INTERNATIONAL ASTROPHYSICS CONFERENCE: LINEAR AND NONLINEAR PARTICLE ENERGIZATION THROUGHOUT THE HELIOSPHERE AND BEYOND, 2015, 642
[4]   THE TRANSPORT OF LOW-FREQUENCY TURBULENCE IN ASTROPHYSICAL FLOWS. II. SOLUTIONS FOR THE SUPER-ALFVENIC SOLAR WIND [J].
Adhikari, L. ;
Zank, G. P. ;
Bruno, R. ;
Telloni, D. ;
Hunana, P. ;
Dosch, A. ;
Marino, R. ;
Hu, Q. .
ASTROPHYSICAL JOURNAL, 2015, 805 (01)
[5]   A solvable model of Vlasov-kinetic plasma turbulence in Fourier-Hermite phase space [J].
Adkins, T. ;
Schekochihin, A. A. .
JOURNAL OF PLASMA PHYSICS, 2018, 84 (01)
[6]   Impact of space weather on climate and habitability of terrestrial-type exoplanets [J].
Airapetian, V. S. ;
Barnes, R. ;
Cohen, O. ;
Collinson, G. A. ;
Danchi, W. C. ;
Dong, C. F. ;
Del Genio, A. D. ;
France, K. ;
Garcia-Sage, K. ;
Glocer, A. ;
Gopalswamy, N. ;
Grenfell, J. L. ;
Gronoff, G. ;
Guedel, M. ;
Herbst, K. ;
Henning, W. G. ;
Jackman, C. H. ;
Jin, M. ;
Johnstone, C. P. ;
Kaltenegger, L. ;
Kay, C. D. ;
Kobayashi, K. ;
Kuang, W. ;
Li, G. ;
Lynch, B. J. ;
Lueftinger, T. ;
Luhmann, J. G. ;
Maehara, H. ;
Mlynczak, M. G. ;
Notsu, Y. ;
Osten, R. A. ;
Ramirez, R. M. ;
Rugheimer, S. ;
Scheucher, M. ;
Schlieder, J. E. ;
Shibata, K. ;
Sousa-Silva, C. ;
Stamenkovic, V ;
Strangeway, R. J. ;
Usmanov, A., V ;
Vergados, P. ;
Verkhoglyadova, O. P. ;
Vidotto, A. A. ;
Voytek, M. ;
Way, M. J. ;
Zank, G. P. ;
Yamashiki, Y. .
INTERNATIONAL JOURNAL OF ASTROBIOLOGY, 2020, 19 (02) :136-194
[7]  
AKASOFU SI, 1981, SPACE SCI REV, V28, P121, DOI 10.1007/BF00218810
[8]   The Explosive Characteristics of the Aurora: The Electric Current Line Approach [J].
Akasofu, Syun-Ichi .
FRONTIERS IN ASTRONOMY AND SPACE SCIENCES, 2019, 6
[9]   Cascades and transitions in turbulent flows [J].
Alexakis, A. ;
Biferale, L. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2018, 767 :1-101
[10]   Small-scale energy cascade of the solar wind turbulence [J].
Alexandrova, O. ;
Carbone, V. ;
Veltri, P. ;
Sorriso-Valvo, L. .
ASTROPHYSICAL JOURNAL, 2008, 674 (02) :1153-1157