The hidden hierarchical nature of soft particulate gels

被引:36
作者
Bantawa, Minaspi [1 ]
Keshavarz, Bavand [2 ]
Geri, Michela [2 ]
Bouzid, Mehdi [3 ]
Divoux, Thibaut [4 ]
McKinley, Gareth H. [2 ]
Del Gado, Emanuela [1 ]
机构
[1] Georgetown Univ, Inst Soft Matter Synth & Metrol, Dept Phys, Washington, DC 20057 USA
[2] MIT, Dept Mech Engn, Cambridge, MA USA
[3] Univ Grenoble Alpes, CNRS, Grenoble INP, 3SR, Grenoble, France
[4] Lab Phys, ENSL, CNRS, Lyon, France
基金
美国国家科学基金会;
关键词
ELASTIC PROPERTIES; SCALING BEHAVIOR; COLLOIDAL GEL; YIELD-STRESS; VISCOELASTICITY; TRANSITION; PERCOLATION; MODELS; MICROSTRUCTURE; DEPENDENCE;
D O I
10.1038/s41567-023-01988-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Soft particulate gels are composed of a small amount of particulate matter dispersed in a continuous fluid phase. The solid components assemble to form a porous matrix, providing rigidity and control of the mechanical response, despite being the minority constituent. The rheological response and gel elasticity are direct functions of the particle volume fraction. However, the diverse range of different functional dependencies reported experimentally has challenged efforts to identify general scaling laws. Here we reveal a hidden hierarchical organization of fractal elements that controls the viscoelastic spectrum, and which is associated with the spatial heterogeneity of the solid matrix topology. The fractal elements form the foundations of a viscoelastic master curve, constructed using large-scale three-dimensional (3D) microscopic simulations of model gels, which can be described by a recursive rheological ladder model over a range of particle volume fractions and gelation rates. The hierarchy of the fractal elements provides the missing general framework required to predict the gel elasticity and the linear viscoelastic response of these complex materials. Colloidal gels consist of particles embedded in a fluid. It is now found that a gel's viscoelastic spectrum, relating mechanical properties and deformation frequencies, can be understood by modelling these gels as networks of fractal viscoelastic units, connected hierarchically.
引用
收藏
页码:1178 / +
页数:9
相关论文
共 66 条
[41]   FAST PARALLEL ALGORITHMS FOR SHORT-RANGE MOLECULAR-DYNAMICS [J].
PLIMPTON, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 1995, 117 (01) :1-19
[42]   Universal features of the fluid to solid transition for attractive colloidal particles [J].
Prasad, V ;
Trappe, V ;
Dinsmore, AD ;
Segre, PN ;
Cipelletti, L ;
Weitz, DA .
FARADAY DISCUSSIONS, 2003, 123 :1-12
[43]   Elasticity and clustering in concentrated depletion gels [J].
Ramakrishnan, S ;
Chen, YL ;
Schweizer, KS ;
Zukoski, CF .
PHYSICAL REVIEW E, 2004, 70 (04) :4
[44]   Shear melting and recovery of crosslinkable cellulose nanocrystal-polymer gels [J].
Rao, Abhinav ;
Divoux, Thibaut ;
McKinley, Gareth H. ;
Hart, A. John .
SOFT MATTER, 2019, 15 (21) :4401-4412
[45]   Elasticity of colloidal gels: structural heterogeneity, floppy modes, and rigidity [J].
Rocklin, D. Zeb ;
Hsiao, Lilian ;
Szakasits, Megan ;
Solomon, Michael J. ;
Mao, Xiaoming .
SOFT MATTER, 2021, 17 (29) :6929-6934
[46]   Rheology and internal dynamics of colloidal gels from the dilute to the concentrated regime [J].
Romer, S. ;
Bissig, H. ;
Schurtenberger, P. ;
Scheffold, F. .
EPL, 2014, 108 (04)
[47]   Real space analysis of colloidal gels: triumphs, challenges and future directions [J].
Royall, C. Patrick ;
Faers, Malcolm A. ;
Fussell, Sian L. ;
Hallett, James E. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2021, 33 (45)
[48]   HIERARCHICAL ANALOGS TO FRACTIONAL RELAXATION EQUATIONS [J].
SCHIESSEL, H ;
BLUMEN, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (19) :5057-5069
[49]   MESOSCOPIC PICTURES OF THE SOL-GEL TRANSITION - LADDER MODELS AND FRACTAL NETWORKS [J].
SCHIESSEL, H ;
BLUMEN, A .
MACROMOLECULES, 1995, 28 (11) :4013-4019
[50]   SCALING BEHAVIOR OF THE ELASTIC PROPERTIES OF COLLOIDAL GELS [J].
SHIH, WH ;
SHIH, WY ;
KIM, SI ;
LIU, J ;
AKSAY, IA .
PHYSICAL REVIEW A, 1990, 42 (08) :4772-4779