Automatic Landmark Identification on IntraOralScans

被引:1
作者
Baquero, Baptiste [1 ,9 ]
Gillot, Maxime [1 ,9 ]
Cevidanes, Lucia [1 ]
Al Turkestani, Najla [1 ,5 ]
Gurgel, Marcela [1 ]
Leclercq, Mathieu [4 ,9 ]
Bianchi, Jonas [1 ,3 ]
Yatabe, Marilia [1 ]
Ruellas, Antonio [1 ,2 ]
Massaro, Camila [8 ]
Aliaga, Aron [1 ]
Castrillon, Maria Antonia Alvarez [6 ]
Rey, Diego [6 ]
Aristizabal, Juan Fernando [7 ]
Prieto, Juan Carlos [4 ]
机构
[1] Univ Michigan, Ann Arbor, MI 48109 USA
[2] Univ Fed Rio de Janeiro, Rio De Janeiro, Brazil
[3] Univ Pacific, San Francisco, CA 94115 USA
[4] Univ N Carolina, Chapel Hill, NC 27515 USA
[5] King Abdulaziz Univ, Jeddah, Saudi Arabia
[6] CES Univ, Medellin, Colombia
[7] Univ Valle, Cali, Colombia
[8] Univ Fed Goias, Goiania, Go, Brazil
[9] CPE Lyon, Lyon, France
来源
CLINICAL IMAGE-BASED PROCEDURES, CLIP 2022 | 2023年 / 13746卷
关键词
Deep learning; Automatic landmark identification; Digital dental model;
D O I
10.1007/978-3-031-23179-7_4
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
With the advent of 3D printing and additive manufacturing of dental devices, IntraOral scanners (IOS) have gained wide adoption in dental practices and allowed for efficient workflows in clinical settings. Accurate automatic identification of dental landmarks in IOS is required to aid dental researchers and clinicians to plan and assess tooth position for crown restorations, orthodontics movements, and/or implant dentistry. In this paper, we present a new algorithm for Automatic Landmark Identification on IntraOralScans (ALIIOS), that combines image processing, image segmentation, and machine learning approaches to automatically and accurately identify commonly used landmarks on IOSs. Four hundred and five digital dental models were pre-processed by 3 clinician experts to manually annotate 5 landmarks on each dental crown in the upper and lower arches. Our approach uses the PyTorch3D rendering engine to capture 2D views of the dental arches from different viewpoints as well as the target 3D patches at the location of the landmarks. The ALIIOS algorithm synthesizes these 3D patches with a U-Net and allows accurate placement of the landmarks on the surface of each dental crown. Our results, after cross-validation, show an average distance error between the prediction and the clinicians' landmarks of 0.43 +/- 0.28mm and 0.45 +/- 0.28mm for respectively lower and upper occlusal landmarks, and 0.62 +/- 0.28mm for lower and upper cervical landmarks. There was on average a 5% error of landmarks more than 1.5mm away from the clinicians' landmarks, due to errors in landmark nomenclature or improper segmentation. In conclusion, we present and validate a novel algorithm for accurate automated landmark identification on intraoral scans to increase efficiency and facilitate quantitative assessments in clinical practice.
引用
收藏
页码:32 / 42
页数:11
相关论文
共 11 条
[1]   Treatment comfort, time perception, and preference for conventional and digital impression techniques: A comparative study in young patients [J].
Burhardt, Lukasz ;
Livas, Christos ;
Kerdijk, Wouter ;
van der Meer, Wicher Joerd ;
Ren, Yijin .
AMERICAN JOURNAL OF ORTHODONTICS AND DENTOFACIAL ORTHOPEDICS, 2016, 150 (02) :261-267
[2]   Accuracy of CAD/CAM Digital Impressions with Different Intraoral Scanner Parameters [J].
Chiu, Asher ;
Chen, Yen-Wei ;
Hayashi, Juri ;
Sadr, Alireza .
SENSORS, 2020, 20 (04)
[3]   Dental long axes using digital dental models compared to cone-beam computed tomography [J].
Cong, Amalia ;
Massaro, Camila ;
de Oliveira Ruellas, Antonio Carlos ;
Barkley, Mary ;
Yatabe, Marilia ;
Bianchi, Jonas ;
Ioshida, Marcos ;
Alvarez, Maria Antonia ;
Fernando Aristizabal, Juan ;
Rey, Diego ;
Cevidanes, Lucia .
ORTHODONTICS & CRANIOFACIAL RESEARCH, 2022, 25 (01) :64-72
[4]   Automatic Segmentation of Dental Root Canal and Merging with Crown Shape [J].
Deleat-Besson, Romain ;
Le, Celia ;
Al Turkestani, Najla ;
Zhang, Winston ;
Dumont, Maxime ;
Brosset, Serge ;
Carlos Prieto, Juan ;
Cevidanes, Lucia ;
Bianchi, Jonas ;
Ruellas, Antonio ;
Gurgel, Marcela ;
Massaro, Camila ;
Aliaga-Del Castillo, Aron ;
Ioshida, Marcos ;
Yatabe, Marilia ;
Benavides, Erika ;
Rios, Hector ;
Soki, Fabiana ;
Neiva, Gisele ;
Fernando Aristizabal, Juan ;
Rey, Diego ;
Alvarez, Maria Antonia ;
Najarian, Kayvan ;
Gryak, Jonathan ;
Styner, Martin ;
Fillion-Robin, Jean-Christophe ;
Paniagua, Beatriz ;
Soroushmehr, Reza .
2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, :2948-2951
[5]   The time efficiency of intraoral scanners An in vitro comparative study [J].
Patzelt, Sebastian B. M. ;
Lamprinos, Christos ;
Stampf, Susanne ;
Att, Wael .
JOURNAL OF THE AMERICAN DENTAL ASSOCIATION, 2014, 145 (06) :542-551
[6]  
Pieper S, 2004, 2004 2ND IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: MACRO TO NANO, VOLS 1 and 2, P632
[7]   Occlusion-Net: 2D/3D Occluded Keypoint Localization Using Graph Networks [J].
Reddy, N. Dinesh ;
Vo, Minh ;
Narasimhan, Srinivasa G. .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :7318-7327
[8]   U-Net: Convolutional Networks for Biomedical Image Segmentation [J].
Ronneberger, Olaf ;
Fischer, Philipp ;
Brox, Thomas .
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 :234-241
[9]   Development of intra-oral automated landmark recognition (ALR) for dental and occlusal outcome measurements [J].
Woodsend, Brenainn ;
Koufoudaki, Eirini ;
Lin, Ping ;
McIntyre, Grant ;
El-Angbawi, Ahmed ;
Aziz, Azad ;
Shaw, William ;
Semb, Gunvor ;
Reesu, Gowri Vijay ;
Mossey, Peter A. .
EUROPEAN JOURNAL OF ORTHODONTICS, 2022, 44 (01) :43-50
[10]  
Wu TH, 2022, Arxiv, DOI arXiv:2109.11941