Improving Mg2+/Li+ separation performance of polyamide nanofiltration membrane by swelling-embedding-shrinking strategy

被引:31
|
作者
Li, Hengyu [1 ,2 ]
Li, Yunhao [1 ,2 ]
Li, Meng [1 ]
Jin, Yan [3 ]
Kang, Guodong [1 ]
Cao, Yiming [1 ]
机构
[1] Chinese Acad Sci, Dalian Inst Chem Phys, Dalian Natl Lab Clean Energy, Dalian 116023, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Vontron Technol Co Ltd, Guiyang 550018, Peoples R China
关键词
Swelling-embedding-shrinking; Nanofiltration membrane; Diethylenetriamine; Mg2+; Li plus separation; SALT-LAKE BRINES; INTERFACIAL POLYMERIZATION; LITHIUM-CHLORIDE; MAGNESIUM; RECOVERY; LAYER;
D O I
10.1016/j.memsci.2022.121321
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Extraction of lithium from salt lakes is an important route for lithium sources. Due to the unique structure and separation mechanism, i.e., size exclusion and Donnan effect, nanofiltration (NF) is considered as a promising way to separate magnesium (Mg2+) and lithium (Li+) ions. However, the Mg2+/Li+ separation factor of NF membrane fabricated by traditional interfacial polymerization (IP) is usually dissatisfactory. Here, a swelling -embedding-shrinking strategy was proposed to modify polyethyleneimine (PEI)/trimesoyl chloride (TMC) NF membranes using diethylenetriamine (DETA) to improve the performance in Mg2+/Li+ separation. The pristine PEI/TMC NF membrane was swollen with methanol to increase the polyamide chain spacing followed by embedding electropositive DETA as a modifier. The charge properties and pore structure of the active layer could be regulated by optimizing the modification conditions. Within comparison to the pristine membrane (TFC-0), the pure water flux of modified NF membrane (TFC-3) increased by 63.6% because of the rougher surface and the larger pore size. Meanwhile, the embedding of electropositive DETA reduced the electronegative property of membrane surface. In consequence, TFC-3 membrane exhibited higher rejection of MgCl2 (93.9% against 88.4%) and lower rejection of LiCl (31.0% against 32.1%), thus showing a twofold improvement in Mg2+/Li+ separation factor (SLi, Mg = 11.38 against 5.87). The swelling-embedding-shrinking strategy in this article provided a good reference for the modification of NF membranes in the separation of multivalent and monovalent ions.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Positively-charged nanofiltration membrane constructed by polyethyleneimine/layered double hydroxide for Mg2+/Li+ separation
    Ni, Hongxu
    Wang, Naixin
    Yang, Yuye
    Shen, Mengxin
    An, Quan-Fu
    DESALINATION, 2023, 548
  • [22] Analysis of Mg2+/Li+ separation mechanism by charged nanofiltration membranes: visual simulation
    Li, Nan
    Guo, Changsheng
    Shi, Haiting
    Xu, Zhiwei
    Xu, Ping
    Teng, Kunyue
    Shan, Mingjing
    Qian, Xiaoming
    NANOTECHNOLOGY, 2021, 32 (08)
  • [23] Recent advances of thin film composite nanofiltration membranes for Mg2+/ Li+ separation
    Peng, Hao Yi
    Lau, Siew Kei
    Yong, Wai Fen
    ADVANCED MEMBRANES, 2024, 4
  • [24] Molecular simulation of carbon nanotube membrane for Li+ and Mg2+ separation
    Yang, Dengfeng
    Liu, Qingzhi
    Li, Hongman
    Gao, Congjie
    JOURNAL OF MEMBRANE SCIENCE, 2013, 444 : 327 - 331
  • [25] Aza-crown ether-coupled polyamide nanofiltration membrane for efficient Li+/Mg2+separation
    Zha, Zhiyuan
    Li, Tingyu
    Hussein, Ismail
    Wang, Ying
    Zhao, Song
    JOURNAL OF MEMBRANE SCIENCE, 2024, 695
  • [26] Multifunctional role of surfactant in fabricating polyamide nanofiltration membranes for Li+/Mg2+separation
    Fang, Shang
    Guan, Kecheng
    Zhang, Aiwen
    Dai, Liheng
    Zhou, Siyu
    Fu, Wenming
    Hu, Mengyang
    Xu, Ping
    Zhang, Pengfei
    Li, Zhan
    Mai, Zhaohuan
    Matsuyama, Hideto
    DESALINATION, 2025, 594
  • [27] Ternary-coordination-regulated polyamide nanofiltration membranes for Li+/Mg2+separation
    Fang, Shang
    Guan, Kecheng
    Zhou, Siyu
    Song, Qiangqiang
    Shi, Yongxuan
    Fu, Wenming
    Li, Zhan
    Xu, Ping
    Hu, Mengyang
    Mai, Zhaohuan
    Zhang, Pengfei
    Matsuyama, Hideto
    DESALINATION, 2024, 581
  • [28] "Bridge" graphene oxide modified positive charged nanofiltration thin membrane with high efficiency for Mg2+/Li+ separation
    Xu, Ping
    Hong, Jun
    Qian, Xiaoming
    Xu, Zhenzhen
    Xia, Hong
    Ni, Qing-Qing
    DESALINATION, 2020, 488 (488)
  • [29] Fabrication of positively charged nanofiltration membrane with uniform charge distribution by reversed interfacial polymerization for Mg2+/Li+ separation
    Li, Yunhao
    Wang, Shuhao
    Wu, Wenyuan
    Yu, Haijun
    Che, Ruxin
    Kang, Guodong
    Cao, Yiming
    JOURNAL OF MEMBRANE SCIENCE, 2022, 659
  • [30] Nanofiltration membrane with a zwitterion-g-C3N4 composite interlayer for Mg2+/Li+ separation
    Ma, Lei
    Bi, Qiuyan
    Zhou, Wanji
    Liu, Xingliang
    Qi, Fuju
    Zhang, Hao
    Gao, Yifan
    Xu, Shiai
    JOURNAL OF WATER PROCESS ENGINEERING, 2023, 53