Deep Interest Network Based on Knowledge Graph Embedding

被引:1
作者
Zhang, Dehai [1 ]
Wang, Haoxing [1 ]
Yang, Xiaobo [1 ]
Ma, Yu [1 ]
Liang, Jiashu [1 ]
Ren, Anquan [1 ]
机构
[1] Yunnan Univ, Sch Software, Kunming 650504, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 01期
关键词
recommendation; knowledge graph embedding; interest explore;
D O I
10.3390/app13010357
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Recommendation systems based on knowledge graphs often obtain user preferences through the user's click matrix. However, the click matrix represents static data and cannot represent the dynamic preferences of users over time. Therefore, we propose DINK, a knowledge graph-based deep interest exploration network, to extract users' dynamic interests. DINK can be divided into a knowledge graph embedding layer, an interest exploration layer, and a recommendation layer. The embedding layer expands the receptive field of the user's click sequence through the knowledge graph, the interest exploration layer combines the GRU and the attention mechanism to explore the user's dynamic interest, and the recommendation layer completes the prediction task. We demonstrate the effectiveness of DINK by conducting extensive experiments on three public datasets.
引用
收藏
页数:13
相关论文
共 30 条
[1]   Deep Reinforcement Learning A brief survey [J].
Arulkumaran, Kai ;
Deisenroth, Marc Peter ;
Brundage, Miles ;
Bharath, Anil Anthony .
IEEE SIGNAL PROCESSING MAGAZINE, 2017, 34 (06) :26-38
[2]  
Cho K., 2014, ARXIV, DOI [10.3115/v1/W14-4012, DOI 10.3115/V1/W14-4012]
[3]  
Choudhary S, 2021, ARXIV
[4]   Knowledge graph-based recommendation framework identifies drivers of resistance in EGFR mutant non-small cell lung cancer [J].
Gogleva, Anna ;
Polychronopoulos, Dimitris ;
Pfeifer, Matthias ;
Poroshin, Vladimir ;
Ughetto, Michael ;
Martin, Matthew J. ;
Thorpe, Hannah ;
Bornot, Aurelie ;
Smith, Paul D. ;
Sidders, Ben ;
Dry, Jonathan R. ;
Ahdesmaki, Miika ;
McDermott, Ultan ;
Papa, Eliseo ;
Bulusu, Krishna C. .
NATURE COMMUNICATIONS, 2022, 13 (01)
[5]   LSTM: A Search Space Odyssey [J].
Greff, Klaus ;
Srivastava, Rupesh K. ;
Koutnik, Jan ;
Steunebrink, Bas R. ;
Schmidhuber, Juergen .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2017, 28 (10) :2222-2232
[6]  
Haoyong Chen, 2016, 2016 IEEE Power and Energy Society General Meeting (PESGM), DOI [10.1109/iWEM.2016.7504980, 10.1109/PESGM.2016.7741231]
[7]   Recurrent Neural Networks with Top-k Gains for Session-based Recommendations [J].
Hidasi, Balazs ;
Karatzoglou, Alexandros .
CIKM'18: PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2018, :843-852
[8]  
Huang PS, 2013, PROCEEDINGS OF THE 22ND ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM'13), P2333
[9]  
Ji GL, 2015, PROCEEDINGS OF THE 53RD ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 7TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING, VOL 1, P687
[10]   Categorization of knowledge graph based recommendation methods and benchmark datasets from the perspectives of application scenarios: A comprehensive survey [J].
Khan, Nasrullah ;
Ma, Zongmin ;
Ullah, Aman ;
Polat, Kemal .
EXPERT SYSTEMS WITH APPLICATIONS, 2022, 206