On some perturbed q-Laguerre-Hahn orthogonal q-polynomials

被引:5
作者
Jbeli, S. [1 ]
Kheriji, L. [2 ]
机构
[1] Univ Tunis El Manar, Fac Sci Tunis, Campus Univ El Manar,LR13ES06, Tunis 2092, Tunisia
[2] Univ Tunis El Manar, Inst Preparatoire Etud Ingn El Manar, Campus Univ El Manar 2092,LR13ES06, Tunis, Tunisia
关键词
Orthogonal q-polynomials; q-derivative operator; q-Laguerre-Hahn character; Regular form; Standard perturbations; PERTURBATIONS; EQUATIONS; FORMS;
D O I
10.1007/s10998-022-00463-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Our goal is to study the multiplication by a polynomial of a H-q-Laguerre-Hahn form and its inverse one where H-q be the q-derivative operator. The class of the obtained form is discussed in detail in the two cases. Some examples in connection with the H-q-semiclassical forms are highlighted.
引用
收藏
页码:115 / 138
页数:24
相关论文
共 27 条
[1]   Symmetric Laguerre-Hahn forms of class s=1 [J].
Alaya, J ;
Maroni, P .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 1996, 4 (04) :301-320
[2]  
Alaya J., 1996, Methods Appl Anal, V3, P12, DOI [10.4310/MAA.1996.v3.n1.a2, DOI 10.4310/MAA.1996.V3.N1.A2]
[3]   On the Christoffel product of a D-Laguerre-Hahn form by a polynomial of one degree [J].
Ben Gharbi, K. ;
Kheriji, L. .
AFRIKA MATEMATIKA, 2021, 32 (5-6) :1147-1157
[4]   Characterization of the symmetric D-Laguerre-Hahn orthogonal polynomial sequences of even class via the quadratic decomposition [J].
Ben Gharbi, K. ;
Kheriji, L. ;
Tounsi, M. Ihsen .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2018, 24 (07) :1164-1184
[5]   Third degree classical forms [J].
Ben Salah, I .
APPLIED NUMERICAL MATHEMATICS, 2003, 44 (04) :433-447
[6]  
Bouakkaz H., 1991, ORTHOGONAL POLYNOMIA, V9, P95
[7]   Darboux transformation and perturbation of linear functionals [J].
Bueno, MI ;
Marcellán, F .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 384 :215-242
[8]   SEVERAL FORMULAS AND IDENTITIES RELATED TO CATALAN-Qi AND q-CATALAN-Qi NUMBERS [J].
Chammam, Wathek .
INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2019, 50 (04) :1039-1048
[9]  
Chihara T.S., 1978, An introduction to orthogonal polynomials, V13
[10]  
Christoffel E.B., 1858, J. Reine Angew. Math, V55, P61, DOI DOI 10.1515/CRLL.1858.55.61