Acetylene Tunes Microbial Growth During Aerobic Cometabolism of Trichloroethene

被引:4
作者
Skinner, Justin P. [1 ,2 ,3 ]
Palar, Skye [1 ,2 ,3 ]
Allen, Channing [1 ,2 ,3 ]
Raderstorf, Alia [1 ,2 ,3 ]
Blake, Presley [1 ,2 ,3 ]
Reyes, Arantza Moran [1 ,4 ]
Berg, Riley N. [1 ,2 ,3 ]
Muse, Christopher [1 ,2 ,3 ]
Robles, Aide [1 ,2 ,3 ,5 ]
Hamdan, Nasser [2 ,3 ]
Chu, Min-Ying [5 ]
Delgado, Anca G. [1 ,2 ,3 ]
机构
[1] Arizona State Univ, Biodesign Swette Ctr Environm Biotechnol, Tempe, AZ 85287 USA
[2] Arizona State Univ, Sch Sustainable Engn & Built Environm, Tempe, AZ 85281 USA
[3] Arizona State Univ, Engn Res Ctr Biomediated & Bioinspired Geotech CBB, Tempe, AZ 85281 USA
[4] Univ Nacl Autonoma Mexico, Inst Energias Renovables, Temixco 62588, Morelos, Mexico
[5] Haley & Aldrich Inc, Phoenix, AZ 85004 USA
基金
美国国家科学基金会;
关键词
microbial inhibition; bioclogging; JOB-5; dechlorination; biodegradation; bioremediation; propanotroph; alkanotroph; MYCOBACTERIUM-VACCAE JOB5; AMMONIA MONOOXYGENASE; REDUCTIVE DECHLORINATION; METHANE MONOOXYGENASE; BIODEGRADATION; PROPANE; DEGRADATION; GROUNDWATER; INHIBITION; TOLUENE;
D O I
10.1021/acs.est.3c08068
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Microbial aerobic cometabolism is a possible treatment approach for large, dilute trichloroethene (TCE) plumes at groundwater contaminated sites. Rapid microbial growth and bioclogging pose a persistent problem in bioremediation schemes. Bioclogging reduces soil porosity and permeability, which negatively affects substrate distribution and contaminant treatment efficacy while also increasing the operation and maintenance costs of bioremediation. In this study, we evaluated the ability of acetylene, an oxygenase enzyme-specific inhibitor, to decrease biomass production while maintaining aerobic TCE cometabolism capacity upon removal of acetylene. We first exposed propane-metabolizing cultures (pure and mixed) to 5% acetylene (v v(-1)) for 1, 2, 4, and 8 d and we then verified TCE aerobic cometabolic activity. Exposure to acetylene overall decreased biomass production and TCE degradation rates while retaining the TCE degradation capacity. In the mixed culture, exposure to acetylene for 1-8 d showed minimal effects on the composition and relative abundance of TCE cometabolizing bacterial taxa. TCE aerobic cometabolism and incubation conditions exerted more notable effects on microbial ecology than did acetylene. Acetylene appears to be a viable approach to control biomass production that may lessen the likelihood of bioclogging during TCE cometabolism. The findings from this study may lead to advancements in aerobic cometabolism remediation technologies for dilute plumes.
引用
收藏
页码:6274 / 6283
页数:10
相关论文
共 97 条
[1]   Acetylenotrophy: a hidden but ubiquitous microbial metabolism? [J].
Akob, Denise M. ;
Sutton, John M. ;
Fierst, Janna L. ;
Haase, Karl B. ;
Baesman, Shaun ;
Luther, George W., III ;
Miller, Laurence G. ;
Oremland, Ronald S. .
FEMS MICROBIOLOGY ECOLOGY, 2018, 94 (08)
[2]   PRODUCT TOXICITY AND COMETABOLIC COMPETITIVE-INHIBITION MODELING OF CHLOROFORM AND TRICHLOROETHYLENE TRANSFORMATION BY METHANOTROPHIC RESTING CELLS [J].
ALVAREZ-COHEN, L ;
MCCARTY, PL .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1991, 57 (04) :1031-1037
[3]   Kinetics of aerobic cometabolism of chlorinated solvents [J].
Alvarez-Cohen, L ;
Speitel, GE .
BIODEGRADATION, 2001, 12 (02) :105-126
[4]  
[Anonymous], 2021, ASSESSING MANAGING C
[5]  
[Anonymous], 2012, The atmospheric chemist's companion
[6]   Activity-Based Protein Profiling of Ammonia Monooxygenase in Nitrosomonas europaea [J].
Bennett, Kristen ;
Sadler, Natalie C. ;
Wright, Aaron T. ;
Yeager, Chris ;
Hyman, Michael R. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2016, 82 (08) :2270-2279
[7]   Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2′s q2-feature-classifier plugin [J].
Bokulich, Nicholas A. ;
Kaehler, Benjamin D. ;
Rideout, Jai Ram ;
Dillon, Matthew ;
Bolyen, Evan ;
Knight, Rob ;
Huttley, Gavin A. ;
Caporaso, J. Gregory .
MICROBIOME, 2018, 6
[8]   Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2 [J].
Bolyen, Evan ;
Rideout, Jai Ram ;
Dillon, Matthew R. ;
Bokulich, NicholasA. ;
Abnet, Christian C. ;
Al-Ghalith, Gabriel A. ;
Alexander, Harriet ;
Alm, Eric J. ;
Arumugam, Manimozhiyan ;
Asnicar, Francesco ;
Bai, Yang ;
Bisanz, Jordan E. ;
Bittinger, Kyle ;
Brejnrod, Asker ;
Brislawn, Colin J. ;
Brown, C. Titus ;
Callahan, Benjamin J. ;
Caraballo-Rodriguez, Andres Mauricio ;
Chase, John ;
Cope, Emily K. ;
Da Silva, Ricardo ;
Diener, Christian ;
Dorrestein, Pieter C. ;
Douglas, Gavin M. ;
Durall, Daniel M. ;
Duvallet, Claire ;
Edwardson, Christian F. ;
Ernst, Madeleine ;
Estaki, Mehrbod ;
Fouquier, Jennifer ;
Gauglitz, Julia M. ;
Gibbons, Sean M. ;
Gibson, Deanna L. ;
Gonzalez, Antonio ;
Gorlick, Kestrel ;
Guo, Jiarong ;
Hillmann, Benjamin ;
Holmes, Susan ;
Holste, Hannes ;
Huttenhower, Curtis ;
Huttley, Gavin A. ;
Janssen, Stefan ;
Jarmusch, Alan K. ;
Jiang, Lingjing ;
Kaehler, Benjamin D. ;
Bin Kang, Kyo ;
Keefe, Christopher R. ;
Keim, Paul ;
Kelley, Scott T. ;
Knights, Dan .
NATURE BIOTECHNOLOGY, 2019, 37 (08) :852-857
[9]   BLAST plus : architecture and applications [J].
Camacho, Christiam ;
Coulouris, George ;
Avagyan, Vahram ;
Ma, Ning ;
Papadopoulos, Jason ;
Bealer, Kevin ;
Madden, Thomas L. .
BMC BIOINFORMATICS, 2009, 10
[10]   Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms [J].
Caporaso, J. Gregory ;
Lauber, Christian L. ;
Walters, William A. ;
Berg-Lyons, Donna ;
Huntley, James ;
Fierer, Noah ;
Owens, Sarah M. ;
Betley, Jason ;
Fraser, Louise ;
Bauer, Markus ;
Gormley, Niall ;
Gilbert, Jack A. ;
Smith, Geoff ;
Knight, Rob .
ISME JOURNAL, 2012, 6 (08) :1621-1624