Camouflaged Object Detection Based on Deep Learning with Attention-Guided Edge Detection and Multi-Scale Context Fusion

被引:1
|
作者
Wen, Yalin [1 ]
Ke, Wei [1 ,2 ]
Sheng, Hao [1 ,3 ,4 ]
机构
[1] Macao Polytech Univ, Fac Appl Sci, Macau 999078, Peoples R China
[2] Macao Polytech Univ, Engn Res Ctr Appl Technol Machine Translat & Artif, Minist Educ, Macau 999078, Peoples R China
[3] Beihang Univ, Sch Comp Sci & Engn, State Key Lab Virtual Real Technol & Syst, Beijing 100191, Peoples R China
[4] Beihang Univ, Zhongfa Aviat Inst, Hangzhou 310000, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 06期
关键词
camouflaged object detection; EfficientNet; salient object detection; deep learning; NETWORK;
D O I
10.3390/app14062494
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In nature, objects that use camouflage have features like colors and textures that closely resemble their background. This creates visual illusions that help them hide and protect themselves from predators. This similarity also makes the task of detecting camouflaged objects very challenging. Methods for camouflaged object detection (COD), which rely on deep neural networks, are increasingly gaining attention. These methods focus on improving model performance and computational efficiency by extracting edge information and using multi-layer feature fusion. Our improvement is based on researching ways to enhance efficiency in the encode-decode process. We have developed a variant model that combines Swin Transformer (Swin-T) and EfficientNet-B7. This model integrates the strengths of both Swin-T and EfficientNet-B7, and it employs an attention-guided tracking module to efficiently extract edge information and identify objects in camouflaged environments. Additionally, we have incorporated dense skip links to enhance the aggregation of deep-level feature information. A boundary-aware attention module has been incorporated into the final layer of the initial shallow information recognition phase. This module utilizes the Fourier transform to quickly relay specific edge information from the initially obtained shallow semantics to subsequent stages, thereby more effectively achieving feature recognition and edge extraction. In the latter phase, which is focused on deep semantic extraction, we employ a dense skip joint attention module to enhance the decoder's performance and efficiency, ensuring accurate capture of deep-level information, feature recognition, and edge extraction. In the later stage of deep semantic extraction, we use a dense skip joint attention module to improve the decoder's performance and efficiency in capturing precise deep information. This module efficiently identifies the specifics and edge information of undetected camouflaged objects across channels and spaces. Differing from previous methods, we introduce an adaptive pixel strength loss function for handling key captured information. Our proposed method shows strong competitive performance on three current benchmark datasets (CHAMELEON, CAMO, COD10K). Compared to 26 previously proposed methods using 4 measurement metrics, our approach exhibits favorable competitiveness.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Deformable image registration with attention-guided fusion of multi-scale deformation fields
    He, Zhiquan
    He, Yupeng
    Cao, Wenming
    APPLIED INTELLIGENCE, 2023, 53 (03) : 2936 - 2950
  • [42] Multi-scale feature fusion with attention mechanism for crowded road object detection
    Wu, Jingtao
    Dai, Guojun
    Zhou, Wenhui
    Zhu, Xudong
    Wang, Zengguan
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2024, 21 (02)
  • [43] Multi-scale feature fusion with attention mechanism for crowded road object detection
    Jingtao Wu
    Guojun Dai
    Wenhui Zhou
    Xudong Zhu
    Zengguan Wang
    Journal of Real-Time Image Processing, 2024, 21
  • [44] Residual attention mechanism and weighted feature fusion for multi-scale object detection
    Zhang, Jie
    Qi, Qiye
    Zhang, Huanlong
    Du, Qifan
    Wang, Fengxian
    Shi, Xiaoping
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (26) : 40873 - 40889
  • [45] Residual attention mechanism and weighted feature fusion for multi-scale object detection
    Jie Zhang
    Qiye Qi
    Huanlong Zhang
    Qifan Du
    Fengxian Wang
    Xiaoping Shi
    Multimedia Tools and Applications, 2023, 82 : 40873 - 40889
  • [46] Composite Backbone Small Object Detection Based on Context and Multi-Scale Information with Attention Mechanism
    Jing, Xinhan
    Liu, Xuesong
    Liu, Baolin
    MATHEMATICS, 2024, 12 (05)
  • [47] Remote Sensing Object Detection Method Based on Attention Mechanism and Multi-scale Feature Fusion
    Liu, Yang
    Xiao, Yewei
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 7155 - 7160
  • [48] Object Detection of Remote Sensing Image Based on Multi-Scale Feature Fusion and Attention Mechanism
    Du, Zuoqiang
    Liang, Yuan
    IEEE ACCESS, 2024, 12 : 8619 - 8632
  • [49] AMF-SparseInst: Attention-guided Multi-Scale Feature Fusion Network Based on SparseInst
    Chen, Yiyi
    Wan, Liang
    Li, Shusheng
    Liao, Liang
    INFORMATION TECHNOLOGY AND CONTROL, 2024, 53 (03):
  • [50] Multi-Scale Attention Deep Neural Network for Fast Accurate Object Detection
    Song, Kaiyou
    Yang, Hua
    Yin, Zhouping
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2019, 29 (10) : 2972 - 2985