Motion correction of 3D dynamic contrast-enhanced ultrasound imaging without anatomical B-Mode images: Pilot evaluation in eight patients

被引:1
作者
Chen, Jia-Shu [1 ,2 ]
Goubran, Maged [3 ,4 ]
Kim, Gaeun [4 ]
Kim, Matthew J. [5 ]
Willmann, Jurgen K. [6 ]
Zeineh, Michael [4 ]
Hristov, Dimitre [5 ]
El Kaffas, Ahmed [6 ,7 ]
机构
[1] Brown Univ, Dept Neurosci, Providence, RI USA
[2] Brown Univ, Warren Alpert Med Sch, Providence, RI USA
[3] Sunnybrook Hlth Sci Ctr, Toronto, ON, Canada
[4] Stanford Univ, Dept Radiol, Stanford, CA USA
[5] Stanford Univ, Stanford Sch Med, Dept Radiat Oncol Radiat Phys, Stanford, CA USA
[6] Stanford Univ, Stanford Sch Med, Dept Radiol, Mol Imaging Program, Stanford, CA USA
[7] Stanford Univ, Sch Med, Dept Radiol, Mol Imaging Program, 300 Pasteur Dr, Palo Alto, CA 94304 USA
关键词
cancer; contrast-enhanced (CE); dynamic contrast-enhanced ultrasound (DCE-US); motion correction (MC); three-dimensional (3D); ultrasound (US); INDICATOR DILUTION MODELS; CANCER; QUANTIFICATION; EFFICIENCY; THERAPY; BOLUS; FLOW; US;
D O I
10.1002/mp.16995
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
BackgroundDynamic contrast-enhanced ultrasound (DCE-US) is highly susceptible to motion artifacts arising from patient movement, respiration, and operator handling and experience. Motion artifacts can be especially problematic in the context of perfusion quantification. In conventional 2D DCE-US, motion correction (MC) algorithms take advantage of accompanying side-by-side anatomical B-Mode images that contain time-stable features. However, current commercial models of 3D DCE-US do not provide side-by-side B-Mode images, which makes MC challenging.PurposeThis work introduces a novel MC algorithm for 3D DCE-US and assesses its efficacy when handling clinical data sets.MethodsIn brief, the algorithm uses a pyramidal approach whereby short temporal windows consisting of three consecutive frames are created to perform local registrations, which are then registered to a master reference derived from a weighted average of all frames. We applied the algorithm to imaging studies from eight patients with metastatic lesions in the liver and assessed improvements in original versus motion corrected 3D DCE-US cine using: (i) frame-to-frame volumetric overlap of segmented lesions, (ii) normalized correlation coefficient (NCC) between frames (similarity analysis), and (iii) sum of squared errors (SSE), root-mean-squared error (RMSE), and r-squared (R2) quality-of-fit from fitted time-intensity curves (TIC) extracted from a segmented lesion.ResultsWe noted improvements in frame-to-frame lesion overlap across all patients, from 68% +/- 13% without correction to 83% +/- 3% with MC (p = 0.023). Frame-to-frame similarity as assessed by NCC also improved on two different sets of time points from 0.694 +/- 0.057 (original cine) to 0.862 +/- 0.049 (corresponding MC cine) and 0.723 +/- 0.066 to 0.886 +/- 0.036 (p <= 0.001 for both). TIC analysis displayed a significant decrease in RMSE (p = 0.018) and a significant increase in R2 goodness-of-fit (p = 0.029) for the patient cohort.ConclusionsOverall, results suggest decreases in 3D DCE-US motion after applying the proposed algorithm.
引用
收藏
页码:4827 / 4837
页数:11
相关论文
共 37 条
[1]   QUANTIFICATION OF TUMOR MICROVASCULARITY WITH RESPIRATORY GATED CONTRAST ENHANCED ULTRASOUND FOR MONITORING THERAPY [J].
Averkiou, Michalakis ;
Lampaskis, Marios ;
Kyriakopoulou, Konstantina ;
Skarlos, Dimosthenis ;
Klouvas, Georgios ;
Strouthos, Costas ;
Leenz, Edward .
ULTRASOUND IN MEDICINE AND BIOLOGY, 2010, 36 (01) :68-77
[2]   Automatic motion estimation using flow parameters for dynamic contrast-enhanced ultrasound [J].
Barrois, Guillaume ;
Coron, Alain ;
Lucidarme, Olivier ;
Bridal, S. Lori .
PHYSICS IN MEDICINE AND BIOLOGY, 2015, 60 (06) :2117-2133
[3]   Non-rigid image registration: theory and practice [J].
Crum, WR ;
Hartkens, T ;
Hill, DLG .
BRITISH JOURNAL OF RADIOLOGY, 2004, 77 :S140-S153
[4]   Spatiotemporal Clutter Filtering of Ultrafast Ultrasound Data Highly Increases Doppler and fUltrasound Sensitivity [J].
Demene, Charlie ;
Deffieux, Thomas ;
Pernot, Mathieu ;
Osmanski, Bruno-Felix ;
Biran, Valerie ;
Gennisson, Jean-Luc ;
Sieu, Lim-Anna ;
Bergel, Antoine ;
Franqui, Stephanie ;
Correas, Jean-Michel ;
Cohen, Ivan ;
Baud, Olivier ;
Tanter, Mickael .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2015, 34 (11) :2271-2285
[5]   Quantification of tumor perfusion using dynamic contrast-enhanced ultrasound: impact of mathematical modeling [J].
Doury, Maxime ;
Dizeux, Alexandre ;
de Cesare, Alain ;
Lucidarme, Olivier ;
Pellot-Barakat, Claire ;
Bridal, S. Lori ;
Frouin, Frederique .
PHYSICS IN MEDICINE AND BIOLOGY, 2017, 62 (03) :1113-1125
[6]   Spatial Characterization of Tumor Perfusion Properties from 3D DCE-US Perfusion Maps are Early Predictors of Cancer Treatment Response [J].
El Kaffas, Ahmed ;
Hoogi, Assaf ;
Zhou, Jianhua ;
Durot, Isabelle ;
Wang, Huaijun ;
Rosenberg, Jarrett ;
Tseng, Albert ;
Sagreiya, Hersh ;
Akhbardeh, Alireza ;
Rubin, Daniel L. ;
Kamaya, Aya ;
Hristov, Dimitre ;
Willmann, Jurgen K. .
SCIENTIFIC REPORTS, 2020, 10 (01)
[7]   Quantitative Three-Dimensional Dynamic Contrast-Enhanced Ultrasound Imaging: First-In-Human Pilot Study in Patients with Liver Metastases [J].
El Kaffas, Ahmed ;
Sigrist, Rosa Maria Silveira ;
Fisher, George ;
Bachawal, Sunitha ;
Liau, Joy ;
Wang, Huaijun ;
Karanany, Alexander ;
Durot, Isabelle ;
Rosenberg, Jarrett ;
Hristov, Dimitre ;
Willmann, Jurgen K. .
THERANOSTICS, 2017, 7 (15) :3745-3758
[8]   Contrast enhanced ultrasound: A review of radiology applications [J].
Erlichman, David B. ;
Weiss, Amanda ;
Koenigsberg, Mordecai ;
Stein, Marjorie W. .
CLINICAL IMAGING, 2020, 60 (02) :209-215
[9]   Rigid, affine and locally affine registration of free-form surfaces [J].
Feldmar, J ;
Ayache, N .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 1996, 18 (02) :99-119
[10]   Dynamic Contrast-Enhanced Ultrasound for Quantification of Tissue Perfusion [J].
Froehlich, Eckhart ;
Muller, Reinhold ;
Cui, Xin-Wu ;
Schreiber-Dietrich, Dagmar ;
Dietrich, Christoph F. .
JOURNAL OF ULTRASOUND IN MEDICINE, 2015, 34 (02) :179-196