Deep learning approaches for instantaneous laser absorptance prediction in additive manufacturing
被引:6
作者:
Jiang, Runbo
论文数: 0引用数: 0
h-index: 0
机构:
Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USACarnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA
Jiang, Runbo
[1
]
Smith, John
论文数: 0引用数: 0
h-index: 0
机构:
Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USACarnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA
Smith, John
[1
]
Yi, Yu-Tsen
论文数: 0引用数: 0
h-index: 0
机构:
Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USACarnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA
Yi, Yu-Tsen
[1
]
Sun, Tao
论文数: 0引用数: 0
h-index: 0
机构:
Univ Virginia, Dept Mat Sci & Engn, Charlottesville, VA 22904 USACarnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA
Sun, Tao
[2
]
Simonds, Brian J.
论文数: 0引用数: 0
h-index: 0
机构:
NIST, Appl Phys Div, Boulder, CO 80305 USACarnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA
Simonds, Brian J.
[3
]
Rollett, Anthony D.
论文数: 0引用数: 0
h-index: 0
机构:
Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA
Carnegie Mellon Univ, NextManufacturing Ctr, Pittsburgh, PA 15213 USACarnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA
Rollett, Anthony D.
[1
,4
]
机构:
[1] Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA
[2] Univ Virginia, Dept Mat Sci & Engn, Charlottesville, VA 22904 USA
[3] NIST, Appl Phys Div, Boulder, CO 80305 USA
[4] Carnegie Mellon Univ, NextManufacturing Ctr, Pittsburgh, PA 15213 USA
The quantification of absorbed light is essential for understanding laser-material interactions and melt pool dynamics in order to minimize defects in additively manufactured metal components. The geometry of a vapor depression formed during laser melting is closely related to laser energy absorption. This relationship has been observed by the state-of-the-art in situ high-speed synchrotron X-ray visualization and integrating sphere radiometry. These two techniques create a temporally resolved dataset consisting of vapor depression images and corresponding laser absorptance. In this work, we propose two different approaches to predict instantaneous laser absorptance. The end-to-end approach uses deep convolutional neural networks to learn implicit features of X-ray images automatically and predict the laser energy absorptance. The two-stage approach uses a semantic segmentation model to engineer geometric features and predict absorptance using classical regression models. While having distinct advantages, both approaches achieved a consistently low mean absolute error of less than 3.3%.