Effects of sodium butyrate on growth performance, antioxidant status, inflammatory response and resistance to hypoxic stress in juvenile largemouth bass (Micropterus salmoides)

被引:8
|
作者
Hou, Dongqiang [1 ,2 ]
Li, Min [1 ,2 ]
Li, Peijia [1 ,2 ]
Chen, Bing [1 ]
Huang, Wen [1 ]
Guo, Hui [2 ]
Cao, Junming [1 ]
Zhao, Hongxia [1 ]
机构
[1] Guangdong Acad Agr Sci, Inst Anim Sci, Collaborat Innovat Ctr Aquat Sci, Guangdong Key Lab Anim Breeding & Nutr, Guangzhou, Peoples R China
[2] Guangdong Ocean Univ, Coll Fisheries, Zhanjiang, Peoples R China
来源
FRONTIERS IN IMMUNOLOGY | 2023年 / 14卷
基金
中国国家自然科学基金;
关键词
sodium butyrate; largemouth bass; antioxidant system; inflammatory response; hypoxic stress; CHAIN FATTY-ACIDS; SEA BASS; DICENTRARCHUS-LABRAX; OXIDATIVE STRESS; BODY-COMPOSITION; IMMUNE FUNCTION; ORGANIC-ACIDS; NILE TILAPIA; FISH; METABOLISM;
D O I
10.3389/fimmu.2023.1265963
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
The aim of this study was to investigate the effects of sodium butyrate (SB) supplementation on growth performance, antioxidant enzyme activities, inflammatory factors, and hypoxic stress in largemouth bass (Micropterus salmoides). Diets were supplemented with different doses of SB at 0 (SB0), 0.5 (SB1), 1.0 (SB2) and 2.0 (SB3) g/kg. The hypoxic stress experiment was performed after 56 days of culture. The results showed that compared with the SB0 group, the final body weight, weight gain rate and protein deposition rate of the SB3 group were significantly increased (P<0.05), while FCR was significantly decreased (P<0.05). The contents of dry matter, crude lipids, and ash in the SB2 group were significantly higher than those in the SB0 group (P<0.05). The urea level was significantly decreased (P<0.05), and the glucose content was significantly increased (P<0.05) in the SB supplement group. Compared with the SB0 group, the SB2 group had significant reductions in the levels of serum triglyceride, cholesterol, elevated-density lipoprotein cholesterol, and low-density lipoprotein (P<0.05), and significant reductions in the levels of liver alkaline phosphatase and malondialdehyde (P<0.05). The total antioxidant capacity of the SB1 group was higher than that of other groups (P<0.05). Compared with the SB0 group, the mRNA expression of TLR22, MyD88, TGF-beta 1, IL-1 beta and IL-8 in the SB2 group significantly decreased (P<0.05). The cumulative mortality rate was significantly decreased in the SB2 and SB3 groups in comparison with that in the SB0 group after three hours of hypoxic stress (P<0.05). In a 56-day feeding trial, SB enhanced largemouth bass growth by increasing antioxidant enzyme activity and inhibiting TLR22-MyD88 signaling, therefore increasing cumulative mortality from hypoxic stress in largemouth bass.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Effects of Dietary Cobalt Levels on Growth Performance, Antioxidant Capacity, and Immune Status of Juvenile Largemouth Bass (Micropterus salmoides)
    Huang, Dongyu
    Jahazi, Joshua Daniel
    Ren, Mingchun
    Zhang, Lu
    Liang, Hualiang
    VETERINARY SCIENCES, 2024, 11 (11)
  • [2] Effects of antimicrobial peptides on the growth performance, antioxidant and intestinal function in juvenile largemouth bass, Micropterus salmoides
    Li, Shuai
    Chi, ShuYan
    Cheng, Xiangtang
    Wu, Chenglong
    Xu, Qiaoqing
    Qu, Peng
    Gao, Weihua
    Liu, Yongsheng
    AQUACULTURE REPORTS, 2020, 16
  • [3] Effect of Dietary Copper on Growth Performance, Antioxidant Capacity, and Immunity in Juvenile Largemouth Bass (Micropterus salmoides)
    Kayiira, John Cosmas
    Mi, Haifeng
    Liang, Hualiang
    Ren, Mingchun
    Huang, Dongyu
    Zhang, Lu
    Teng, Tao
    FISHES, 2024, 9 (09)
  • [4] Effects of chronic hypoxia on growth performance, antioxidant capacity and protein turnover of largemouth bass (Micropterus salmoides)
    He, Ya
    Yu, Haodong
    Zhang, Ziyi
    Zhang, Jinying
    Kang, Shengchao
    Zhang, Xuezhen
    AQUACULTURE, 2022, 561
  • [5] Addition of L-carnitine to formulated feed improved growth performance, antioxidant status and lipid metabolism of juvenile largemouth bass, Micropterus salmoides
    Chen, Yifang
    Sun, Zhenzhu
    Liang, Zuman
    Xie, Yongdong
    Tan, Xiaohong
    Su, Jiliang
    Luo, Qiulan
    Zhu, Junyan
    Liu, Qingying
    Wang, Anli
    AQUACULTURE, 2020, 518
  • [6] Effects of dietary yeast hydrolysate on the growth, antioxidant response, immune response and disease resistance of largemouth bass (Micropterus salmoides)
    Gong, Yulong
    Yang, Fan
    Hu, Junpeng
    Liu, Cui
    Liu, Haokun
    Han, Dong
    Jin, Junyan
    Yang, Yunxia
    Zhu, Xiaoming
    Yi, Jianhua
    Xie, Shouqi
    FISH & SHELLFISH IMMUNOLOGY, 2019, 94 : 548 - 557
  • [7] Chlorogenic Acid Plays an Important Role in Improving the Growth and Antioxidant Status and Weakening the Inflammatory Response of Largemouth Bass (Micropterus salmoides)
    Xia, Zetian
    Mi, Haifeng
    Ren, Mingchun
    Huang, Dongyu
    Aboseif, Ahmed Mohamed
    Liang, Hualiang
    Zhang, Lu
    ANIMALS, 2024, 14 (19):
  • [8] Effects of dietary nano-iron on growth, hematological parameters, immune antioxidant response, and hypoxic tolerance in juvenile Largemouth Bass (Micropterus salmoides)
    He, Kuo
    Huang, Rui
    Cheng, Liangshun
    Liu, Qiao
    Zhang, Yaoyi
    Yan, Haoxiao
    Hu, Yifan
    Zhao, Liulan
    Yang, Song
    AQUACULTURE REPORTS, 2023, 33
  • [9] Dietary valine affects growth performance, intestinal immune and antioxidant capacity in juvenile largemouth bass (Micropterus salmoides)
    Zhao, Fangyue
    Xu, Pao
    Xu, Gangchun
    Huang, Dongyu
    Zhang, Lu
    Ren, Mingchun
    Liang, Hualiang
    ANIMAL FEED SCIENCE AND TECHNOLOGY, 2023, 295
  • [10] Dietary lipid sources affect growth performance, lipid deposition, antioxidant capacity and inflammatory response of largemouth bass ( Micropterus salmoides )
    Gong, Ye
    Chen, Shiwen
    Wang, Zhenjie
    Li, Wenfei
    Xie, Ruitao
    Zhang, Haitao
    Huang, Xuxiong
    Chen, Naisong
    Li, Songlin
    FISH & SHELLFISH IMMUNOLOGY, 2024, 150