Analytical modelling of ultra-small group delay variation of ultra-broadband RF power amplifier using NSGA-II algorithm

被引:2
作者
Kumar, Kunal [1 ]
Kumar, Sandeep [1 ,3 ]
Kanaujia, Binod Kumar [2 ]
机构
[1] Natl Inst Technol Karnataka, Dept Elect & Commun Engn, Mangalore, Karnataka, India
[2] Natl Inst Technol Jalandhar, Dept Elect & Commun Engn, Jalandhar, Punjab, India
[3] Natl Inst Technol Karnataka, Dept Elect & Commun Engn, Mangalore 575025, India
关键词
complementary metal oxide semiconductor (CMOS); EM simulation; group delay (GD); NSGA-II; power added efficiency (PAE); power amplifier (PA); radio frequency (RF); LINEARITY;
D O I
10.1002/jnm.3192
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes a +/- 9.4 ps ultra-small group delay (GD) variation of fully integrated 65 nm complementary metal oxide semiconductor (CMOS) power amplifier (PA) over 6.5-17 GHz broadband for wireless application. The pro-posed CMOS PA is realised by using broadband stage, RLC inter-stage and power stage topologies. The non-dominated sorting genetic algorithm (NSGA-II) is employed for PA parameter optimisation to ensure a small GD variation of +/- 9.4 ps over broadband with an excellent small signal gain flatness of 23.65 +/- 1.85 for 6.5-17 GHz. The small GD variation of +/- 9.4 ps and +/- 11.05 ps are attained under two cases of DC supply voltages of 2.4/1.2 V and 1.2/1.2 V, respectively. To the best of author's knowledge, the achieved GD variations are lowest among all CMOS PAs as reported so far. In addition, an analytical modelling of GD is derived to validating the minimum GD variation using zero-pole compensation. With supply voltages of 2.4/1.2 V at 6.5 GHz, the large signal power gain, Psat and OP1dB are 26 dB, 19.3 dBm and 17.94 dBm, respectively, while peak power added efficiency (PAE) is 38.196%. At reduced supply voltages of 1.2/1.2 V, the PA achieves maximum power gain of 17.7 dB and peak PAE of 35% at 6.5 GHz. The CMOS PA occupies an area of 0.206 mm(2).
引用
收藏
页数:15
相关论文
共 21 条
[1]   Small Group Delay Variation and High Efficiency 3.1-10.6 GHz CMOS Power Amplifier for UWB Systems [J].
Ali, Mayar ;
Hamed, Hesham F. A. ;
Fahmy, Ghazal A. .
ELECTRONICS, 2022, 11 (03)
[2]   A 13.5-19 GHz 20.6-dB Gain CMOS Power Amplifier for FMCW Radar Application [J].
Chen, Bo ;
Lou, Liheng ;
Tang, Kai ;
Wang, Yong ;
Gao, Jianjun ;
Zheng, Yuanjin .
IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2017, 27 (04) :377-379
[3]   A fast and elitist multiobjective genetic algorithm: NSGA-II [J].
Deb, K ;
Pratap, A ;
Agarwal, S ;
Meyarivan, T .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) :182-197
[4]  
Deb K., 1995, Complex Systems, V9, P115
[5]  
Deb K, 2011, MULTIOBJECTIVE EVOLU, P3, DOI DOI 10.1007/978-0-85729-652-81
[6]   An 8-18 GHz power amplifier with novel gain fluctuation compensation technique in 65 nm CMOS [J].
Gong, Jie ;
Li, Wei ;
Hu, Jintao ;
Ye, Jiao ;
Wang, Tao .
JOURNAL OF SEMICONDUCTORS, 2018, 39 (12)
[7]   Automated Generation of the Optimal Performance Trade-Offs of Integrated Inductors [J].
Gonzalez-Echevarria, Reinier ;
Castro-Lopez, Rafael ;
Roca, Elisenda ;
Fernandez, Francisco V. ;
Sieiro, Javier ;
Vidal, Neus ;
Maria Lopez-Villegas, Jose .
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2014, 33 (08) :1269-1273
[8]   A 417 GHz Darlington Cascode Broadband Medium Power Amplifier in 0.18-μm CMOS Technology [J].
Huang, Pin-Cheng ;
Lin, Kun-You ;
Wang, Huei .
IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2010, 20 (01) :43-45
[9]  
LIU J, 2019 IEEE AS MICR C, V2019, P1155
[10]  
Lu C, 2006, IEEE RAD FREQ INTEGR, P445