Electric vehicle charging load prediction based on variational mode decomposition and Prophet-LSTM

被引:5
作者
Cheng, Nuo [1 ]
Zheng, Peng [2 ]
Ruan, Xiaofei [1 ]
Zhu, Zhenshan [3 ]
机构
[1] State Grid Fujian Econ Res Inst, Fuzhou, Peoples R China
[2] State Grid Fujian Elect Power, Fuzhou, Peoples R China
[3] Fuzhou Univ, Coll Elect Engn & Automat, Fuzhou, Peoples R China
关键词
electric vehicles charging load; prophet prediction model; neural network; variational mode decomposition; time series prediction; REGRESSION;
D O I
10.3389/fenrg.2023.1297849
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
With the large-scale development of electric vehicles, the accuracy of electric vehicle charging load prediction is increasingly important for electric power system. Accurate EV charging load prediction is essential for the efficiency of electric system planning and economic operation of electric system. This paper proposes an electric vehicle charging load predicting method based on variational mode decomposition and Prophet-LSTM. Firstly, the variational mode decomposition algorithm is used to decompose the charging load into several intrinsic mode functions in order to explore the characteristics of EV charging load data. Secondly, in order to make full use of the advantages of various forecasting methods, the intrinsic mode functions are classified into low and high frequency sequences based on their over-zero rates. The high and low frequency sequences are reconstructed to obtain two frequency sequences. Then the LSTM neural network and Prophet model are used to predict the high and low frequency sequences, respectively. Finally, the prediction results obtained from the prediction of high frequency and low frequency sequences are combined to obtain the final prediction result. The assessment of the prediction results shows that the prediction accuracy of the prediction method proposed in this paper is improved compared to the traditional prediction methods, and the average absolute error is lower than that of ARIMA, LSTM and Prophet respectively by 7.57%, 8.73%, and 46.02%. The results show that the prediction method proposed in this paper has higher prediction accuracy than the traditional methods, and is effective in predicting EV charging load.
引用
收藏
页数:11
相关论文
共 24 条
[1]   Short term electric load forecasting by wavelet transform and grey model improved by PSO (particle swarm optimization) algorithm [J].
Bahrami, Saadat ;
Hooshmand, Rahmat-Allah ;
Parastegari, Moein .
ENERGY, 2014, 72 :434-442
[2]   Optimal Deep Learning LSTM Model for Electric Load Forecasting using Feature Selection and Genetic Algorithm: Comparison with Machine Learning Approaches [J].
Bouktif, Salah ;
Fiaz, Ali ;
Ouni, Ali ;
Serhani, Mohamed Adel .
ENERGIES, 2018, 11 (07)
[3]   Short-Term Electrical Load Forecasting Based on VMD and GRU-TCN Hybrid Network [J].
Cai, Changchun ;
Li, Yuanjia ;
Su, Zhenghua ;
Zhu, Tianqi ;
He, Yaoyao .
APPLIED SCIENCES-BASEL, 2022, 12 (13)
[4]  
Chen Lixing, 2019, Electric Power Automation Equipment, V39, P112, DOI 10.16081/j.issn.1006-6047.2019.01.017
[5]   Electric vehicles standards, charging infrastructure, and impact on grid integration: A technological review [J].
Das, H. S. ;
Rahman, M. M. ;
Li, S. ;
Tan, C. W. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2020, 120
[6]   Forecasting mid-long term electric energy consumption through bagging ARIMA and exponential smoothing methods [J].
de Oliveira, Erick Meira ;
Cyrino Oliveira, Fernando Luiz .
ENERGY, 2018, 144 :776-788
[7]   Variational Mode Decomposition [J].
Dragomiretskiy, Konstantin ;
Zosso, Dominique .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (03) :531-544
[8]  
Gao Ciwei, 2011, Power System Technology, V35, P127
[9]  
[李鹏 Li Peng], 2018, [电网技术, Power System Technology], V42, P4045
[10]   A New Hybrid Approach for Short-Term Electric Load Forecasting Applying Support Vector Machine with Ensemble Empirical Mode Decomposition and Whale Optimization [J].
Liu, Tongxiang ;
Jin, Yu ;
Gao, Yuyang .
ENERGIES, 2019, 12 (08)