Adaptive Neuro-Fuzzy Inference System Modeling and Optimization of Microbial Fuel Cells for Wastewater Treatment

被引:1
|
作者
Abdelkareem, Mohammad Ali [1 ,2 ,3 ]
Alshathri, Samah Ibrahim [4 ]
Masdar, Mohd Shahbudin [3 ]
Olabi, Abdul Ghani [1 ,5 ]
机构
[1] Univ Sharjah, Sustainable Energy & Power Syst Res Ctr, RISE, POB 27272, Sharjah 27272, U Arab Emirates
[2] Minia Univ, Fac Engn, Chem Engn Dept, Al Minya 61111, Egypt
[3] Univ Kebangsaan Malaysia, Fuel Cell Inst, Bangi 43600, Malaysia
[4] Princess Nourah Bint Abdulrahman Univ, Coll Comp & Informat Sci, Dept Informat Technol, POB 84428, Riyadh 11671, Saudi Arabia
[5] Aston Univ, Sch Engn & Appl Sci, Dept Mech Engn & Design, Aston Triangle, Birmingham B4 7ET, England
关键词
microbial fuel cell; artificial ecosystem optimization; ANFIS modeling; ENERGY-CONSUMPTION; ELECTRICITY;
D O I
10.3390/w15203564
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Due to their toxicity, Cr(VI) levels are subject to strict legislation and regulations in various industries and environmental contexts. Effective treatment technologies are also being developed to decrease the negative impacts on human health and the environment by removing Cr(VI) from water sources and wastewater. As a result, it would be interesting to model and optimize the Cr(VI) removal processes, especially those under neutral pH circumstances. Microbial fuel cells (MFCs) have the capacity to remove Cr(VI), but additional research is needed to enhance their usability, increase their efficacy, and address issues like scalability and maintaining stable operation. In this research work, ANFIS modeling and artificial ecosystem optimization (AEO) were used to maximize Cr(VI) removal efficiency and the power density of MFC. First, based on measured data, an ANFIS model is developed to simulate the MFC performance in terms of the Cu(II)/Cr(VI) ratio, substrate (sodium acetate) concentration (g/L), and external resistance ohm. Then, using artificial ecosystem optimization (AEO), the optimal values of these operating parameters, i.e., Cu(II)/Cr(VI) ratio, substrate concentration, and external resistance, are identified, corresponding to maximum Cr(VI) removal efficiency and power density. In the ANFIS modeling stage of power density, the coefficient-of-determination is enhanced to 0.9981 compared with 0.992 (by ANOVA), and the RMSE is decreased to 0.4863 compared with 16.486 (by ANOVA). This shows that the modeling phase was effective. In sum, the integration between ANFIS and AEO increased the power density and Cr(VI) removal efficiency by 19.14% and 15.14%, respectively, compared to the measured data.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Modeling water table depth using adaptive Neuro-Fuzzy Inference System
    Das U.K.
    Roy P.
    Ghose D.K.
    ISH Journal of Hydraulic Engineering, 2019, 25 (03) : 291 - 297
  • [22] Adaptive Neuro-Fuzzy Inference System for drought forecasting
    Bacanli, Ulker Guner
    Firat, Mahmut
    Dikbas, Fatih
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2009, 23 (08) : 1143 - 1154
  • [23] The Optimization of Chiller Loading by Adaptive Neuro-Fuzzy Inference System and Genetic Algorithms
    Lu, Jyun-Ting
    Chang, Yung-Chung
    Ho, Cheng-Yi
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2015, 2015
  • [24] Modeling and optimization of osmotic dehydration of wax apple slices using adaptive neuro-fuzzy inference system
    Sundarsingh, Anjelina
    Bhagyaraj, G. V. S.
    Dash, Kshirod Kumar
    APPLIED FOOD RESEARCH, 2023, 3 (02):
  • [25] ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM FOR END MILLING
    Markopoulos, Angelos P.
    Georgiopoulos, Sotirios
    Kinigalakis, Myron
    Manolakos, Dimitrios E.
    JOURNAL OF ENGINEERING SCIENCE AND TECHNOLOGY, 2016, 11 (09) : 1234 - 1248
  • [26] Modeling and Simulation of an Adaptive Neuro-Fuzzy Inference System (ANFIS) for Mobile Learning
    Al-Hmouz, Ahmed
    Shen, Jun
    Al-Hmouz, Rami
    Yan, Jun
    IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, 2012, 5 (03): : 226 - 237
  • [27] Adaptive neuro-fuzzy inference system for modelling and control
    Amaral, TGB
    Crisóstomo, MM
    Pires, VF
    2002 FIRST INTERNATIONAL IEEE SYMPOSIUM INTELLIGENT SYSTEMS, VOL 1, PROCEEDINGS, 2002, : 67 - 72
  • [28] Adaptive Neuro-Fuzzy Inference System for drought forecasting
    Ulker Guner Bacanli
    Mahmut Firat
    Fatih Dikbas
    Stochastic Environmental Research and Risk Assessment, 2009, 23 : 1143 - 1154
  • [29] Adaptive Neuro-Fuzzy Inference System for Financial Evaluation
    Orhei, Dragomir
    VISION 2020: SUSTAINABLE GROWTH, ECONOMIC DEVELOPMENT, AND GLOBAL COMPETITIVENESS, VOLS 1-5, 2014, : 241 - 245
  • [30] Regional modeling of the ionosphere using adaptive neuro-fuzzy inference system in Iran
    Feizi, Rasoul
    Voosoghi, Behzad
    Razin, Mir Reza Ghaffari
    ADVANCES IN SPACE RESEARCH, 2020, 65 (11) : 2515 - 2528