Deep learning based on susceptibility-weighted MR sequence for detecting cerebral microbleeds and classifying cerebral small vessel disease

被引:6
作者
Wu, Ruizhen [1 ]
Liu, Huaqing [2 ]
Li, Hao [3 ]
Chen, Lifen [4 ]
Wei, Lei [1 ]
Huang, Xuehong [1 ]
Liu, Xu [1 ]
Men, Xuejiao [1 ]
Li, Xidan [2 ]
Han, Lanqing [2 ]
Lu, Zhengqi [1 ]
Qin, Bing [1 ]
机构
[1] Sun Yat Sen Univ, Affiliated Hosp 3, Dept Neurol, 600 Tianhe Rd, Guangzhou 510630, Peoples R China
[2] Tsinghua Univ, Res Inst Tsinghua Pearl River Delta, Ctr Artificial Intelligence Med, 98 Xiangxue 8Th Rd, Guangzhou 510700, Peoples R China
[3] Maoming Peoples Hosp, Dept Neurol, 101 Weimin Rd, Maoming 525000, Peoples R China
[4] Shantou Univ, Med Coll, Dept Neurol, Affiliated Hosp 1, 57 Changping Rd, Shantou 515041, Peoples R China
关键词
Cerebral small vessel disease; Cerebral microbleeds; Susceptibility-weighted MR Sequence; Deep learning; ISCHEMIC-STROKE; DIAGNOSIS; NOTCH3;
D O I
10.1186/s12938-023-01164-1
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Background: Cerebral microbleeds (CMBs) serve as neuroimaging biomarkers to assess risk of intracerebral hemorrhage and diagnose cerebral small vessel disease (CSVD). Therefore, detecting CMBs can evaluate the risk of intracerebral hemorrhage and use its presence to support CSVD classification, both are conducive to optimizing CSVD management. This study aimed to develop and test a deep learning (DL) model based on susceptibility-weighted MR sequence (SWS) to detect CMBs and classify CSVD to assist neurologists in optimizing CSVD management. Patients with arteriolosclerosis (aSVD), cerebral amyloid angiopathy (CAA), and cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) treated at three centers were enrolled between January 2017 and May 2022 in this retrospective study. The SWSs of patients from two centers were used as the development set, and the SWSs of patients from the remaining center were used as the external test set. The DL model contains a Mask R-CNN for detecting CMBs and a multi-instance learning (MIL) network for classifying CSVD. The metrics for model performance included intersection over union (IoU), Dice score, recall, confusion matrices, receiver operating characteristic curve (ROC) analysis, accuracy, precision, and F1-score.Results: A total of 364 SWS were recruited, including 336 in the development set and 28 in the external test set. IoU for the model was 0.523 +/- 0.319, Dice score 0.627 +/- 0.296, and recall 0.706 +/- 0.365 for CMBs detection in the external test set. For CSVD classification, the model achieved a weighted-average AUC of 0.908 (95% CI 0.895-0.921), accuracy of 0.819 (95% CI 0.768-0.870), weighted-average precision of 0.864 (95% CI 0.831-0.897), and weighted-average F1-score of 0.829 (95% CI 0.782-0.876) in the external set, outperforming the performance of the neurologist group.Conclusion: The DL model based on SWS can detect CMBs and classify CSVD, thereby assisting neurologists in optimizing CSVD management.
引用
收藏
页数:15
相关论文
共 37 条
  • [1] Automated detection of cerebral microbleeds in MR images: A two-stage deep learning approach
    Al-masni, Mohammed A.
    Kim, Woo-Ram
    Kim, Eung Yeop
    Noh, Young
    Kim, Dong-Hyun
    [J]. NEUROIMAGE-CLINICAL, 2020, 28
  • [2] Genetics of common cerebral small vessel disease
    Bordes, Constance
    Sargurupremraj, Muralidharan
    Mishra, Aniket
    Debette, Stephanie
    [J]. NATURE REVIEWS NEUROLOGY, 2022, 18 (02) : 84 - 101
  • [3] Antiplatelet Therapy in Cerebral Small Vessel Disease
    Bouasquevisque, Danielle de Sa
    Benavente, Oscar R.
    Shoamanesh, Ashkan
    [J]. CURRENT NEUROLOGY AND NEUROSCIENCE REPORTS, 2019, 19 (09)
  • [4] Gut microbiota from patients with arteriosclerotic CSVD induces higher IL-17A production in neutrophils via activating RORγt
    Cai, Wei
    Chen, Xiaodong
    Men, Xuejiao
    Ruan, Hengfang
    Hu, Mengyan
    Liu, Sanxin
    Lu, Tingting
    Liao, Jinchi
    Zhang, Bingjun
    Lu, Danli
    Huang, Yinong
    Fan, Ping
    Rao, Junping
    Lei, Chunyan
    Wang, Jihui
    Ma, Xiaomeng
    Zhu, Qiang
    Li, Lili
    Zhu, Xiuyun
    Hou, Yujiao
    Li, Shu
    Dong, Qing
    Tian, Qing
    Ai, Lulu
    Luo, Wenjing
    Zuo, Mengyun
    Shen, Liping
    Xie, Congyan
    Song, Hongzhong
    Xu, Ganlin
    Zheng, Kangdi
    Zhang, Zhao
    Lu, Yongjun
    Qiu, Wei
    Chen, Tao
    Xiang, Andy Peng
    Lu, Zhengqi
    [J]. SCIENCE ADVANCES, 2021, 7 (04)
  • [5] CNS small vessel disease A clinical review
    Cannistraro, Rocco J.
    Badi, Mohammed
    Eidelman, Benjamin H.
    Dickson, Dennis W.
    Middlebrooks, Erik H.
    Meschia, James F.
    [J]. NEUROLOGY, 2019, 92 (24) : 1146 - 1156
  • [6] Multiple instance learning: A survey of problem characteristics and applications
    Carbonneau, Marc-Andre
    Cheplygina, Veronika
    Granger, Eric
    Gagnon, Ghyslain
    [J]. PATTERN RECOGNITION, 2018, 77 : 329 - 353
  • [7] CADASIL: yesterday, today, tomorrow
    Chabriat, H.
    Joutel, A.
    Tournier-Lasserve, E.
    Bousser, M. G.
    [J]. EUROPEAN JOURNAL OF NEUROLOGY, 2020, 27 (08) : 1588 - 1595
  • [8] CADASIL
    Chabriat, Hugues
    Joutel, Anne
    Dichgans, Martin
    Tournier-Lasserve, Elizabeth
    Bousser, Marie-Germaine
    [J]. LANCET NEUROLOGY, 2009, 8 (07) : 643 - 653
  • [9] Charidimou A., 2022, Stroke, DOI [10.1161/STROKEAHA.122039501, DOI 10.1161/STROKEAHA.122039501]
  • [10] The Boston criteria version 2.0 for cerebral amyloid angiopathy: a multicentre, retrospective, MRI-neuropathology diagnostic accuracy study
    Charidimou, Andreas
    Boulouis, Gregoire
    Frosch, Matthew P.
    Baron, Jean-Claude
    Pasi, Marco
    Albucher, Jean Francois
    Banerjee, Gargi
    Barbato, Carmen
    Bonneville, Fabrice
    Brandner, Sebastian
    Calviere, Lionel
    Caparros, Francois
    Casolla, Barbara
    Cordonnier, Charlotte
    Delisle, Marie-Bernadette
    Deramecourt, Vincent
    Dichgans, Martin
    Gokcal, Elif
    Herms, Jochen
    Hernandez-Guillamon, Mar
    Jager, Hans Rolf
    Jaunmuktane, Zane
    Linn, Jennifer
    Martinez-Ramirez, Sergi
    Martinez-Saez, Elena
    Mawrin, Christian
    Montaner, Joan
    Moulin, Solene
    Olivot, Jean-Marc
    Piazza, Fabrizio
    Puy, Laurent
    Raposo, Nicolas
    Rodrigues, Mark A.
    Roeber, Sigrun
    Romero, Jose Rafael
    Samarasekera, Neshika
    Schneider, Julie A.
    Schreiber, Stefanie
    Schreiber, Frank
    Schwall, Corentin
    Smith, Colin
    Szalardy, Levente
    Varlet, Pascale
    Viguier, Alain
    Wardlaw, Joanna M.
    Warren, Andrew
    Wollenweber, Frank A.
    Zedde, Marialuisa
    van Buchem, Mark A.
    Gurol, M. Edip
    [J]. LANCET NEUROLOGY, 2022, 21 (08) : 714 - 725