Tuning flow-through cu-based hollow fiber gas-diffusion electrode for high-efficiency carbon monoxide (CO) electroreduction to C2+products

被引:27
作者
Rabiee, Hesamoddin [1 ,2 ,3 ]
Heffernan, James K. [4 ]
Ge, Lei [2 ,3 ]
Zhang, Xueqin [1 ]
Yan, Penghui [3 ]
Marcellin, Esteban [4 ]
Hu, Shihu [1 ]
Zhu, Zhonghua [3 ]
Wang, Hao [2 ]
Yuan, Zhiguo [1 ]
机构
[1] Univ Queensland, Australian Ctr Water & Environm Biotechnol ACWEB, St Lucia, Qld 4072, Australia
[2] Univ Southern Queensland, Ctr Future Mat, Springfield, QLD 4300, Australia
[3] Univ Queensland, Sch Chem Engn, Brisbane, QLD 4072, Australia
[4] Univ Queensland, Australian Inst Bioengn & Nanotechnol, St Lucia, QLD 4072, Australia
来源
APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY | 2023年 / 330卷
基金
澳大利亚研究理事会;
关键词
Electrochemical carbon monoxide reduction; Flow-through gas-diffusion electrode; Hollow fiber; Ethylene production; ELECTROCHEMICAL REDUCTION; ELECTROCATALYTIC CONVERSION; PH-DEPENDENCE; CATALYSTS; SELECTIVITY; PRODUCTS; ETHYLENE; INSIGHTS; DIOXIDE; HYDROCARBONS;
D O I
10.1016/j.apcatb.2023.122589
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electrochemical carbon monoxide reduction (CORR) to C2+ products has advantages over electrochemical CO2 conversion (CO2RR) as issues such as carbonation, and CO2 loss during CO2RR are omitted in CORR due to the stability of CO in alkaline solutions. Facing common challenges as CO2RR, CORR suffers more from mass transport resistance and intrinsically lower aqueous CO solubility. Therefore gas-diffusion electrodes (GDEs) are desired to boost the formation of triple phases and active sites to obtain higher reaction rates. Herein, for the first time Cu-based hollow fiber GDEs (HFGDEs) are tuned for CORR to C2+ products. By growing a layer of Cu nanocubes as the catalyst layer on HFGDEs, non-selective pristine copper HFGDE became highly selective for C2+ products (FE>90%), with ethylene as the main product (FE>65%), owing to the dominant Cu (100) facet in Cu nanocubes with high C2+ selectivity. In addition, ultra-high ethylene partial current density of > 470 mA cm(-2) at -0.8 V vs. RHE in 5.0 M KOH was obtained, owing to the abundant porosity and surface area available for triple-phase formation on microtubular GDEs and their enhanced mass transport. The electrodes exhibited one of the highest partial current densities achieved for ethylene production, indicating the promises of flow-through hollow fiber configuration for other desired products or gas-phase electrochemical reactions with low aqueous solubility.
引用
收藏
页数:10
相关论文
共 63 条
[51]   Activation of C2H4 reaction pathways in electrochemical CO2 reduction under low CO2 partial pressure [J].
Song, Hakhyeon ;
Song, Jun Tae ;
Kim, Beomil ;
Tan, Ying Chuan ;
Oh, Jihun .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 272
[52]   Evaluating the Effects of Membranes, Cell Designs, and Flow Configurations on the Performance of Cu-GDEs in Converting CO2 to CO [J].
Sousa, Liniker de ;
Benes, Nieck E. ;
Mul, Guido .
ACS ES&T ENGINEERING, 2022, :2034-2042
[53]   Pulsed Electrochemical Carbon Monoxide Reduction on Oxide-Derived Copper Catalyst [J].
Strain, Jacob M. ;
Gulati, Saumya ;
Pishgar, Sahar ;
Spurgeon, Joshua M. .
CHEMSUSCHEM, 2020, 13 (11) :3028-3033
[54]   From electricity to fuels: Descriptors for C1 selectivity in electrochemical CO2 reduction [J].
Tang, Michael T. ;
Peng, Hongjie ;
Lamoureux, Philomena Schlexer ;
Bajdich, Michal ;
Abild-Pedersen, Frank .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 279
[55]   Controlling the selectivity of CO2 electroreduction on copper: The effect of the electrolyte concentration and the importance of the local pH [J].
Varela, Ana Sofia ;
Kroschel, Matthias ;
Reier, Tobias ;
Strasser, Peter .
CATALYSIS TODAY, 2016, 260 :8-13
[56]   The effect of electrolyte composition on the electroreduction of CO2 to CO on Ag based gas diffusion electrodes [J].
Verma, Sumit ;
Lu, Xun ;
Ma, Sichao ;
Masel, Richard I. ;
Kenis, Paul J. A. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (10) :7075-7084
[57]   Gas diffusion electrodes, reactor designs and key metrics of low-temperature CO2 electrolysers [J].
Wakerley, David ;
Lamaison, Sarah ;
Wicks, Joshua ;
Clemens, Auston ;
Feaster, Jeremy ;
Corral, Daniel ;
Jaffer, Shaffiq A. ;
Sarkar, Amitava ;
Fontecave, Marc ;
Duoss, Eric B. ;
Baker, Sarah ;
Sargent, Edward H. ;
Jaramillo, Thomas F. ;
Hahn, Christopher .
NATURE ENERGY, 2022, 7 (02) :130-143
[58]   Electrochemically converting carbon monoxide to liquid fuels by directing selectivity with electrode surface area [J].
Wang, Lei ;
Nitopi, Stephanie ;
Wong, Andrew B. ;
Snider, Jonathan L. ;
Nielander, Adam C. ;
Morales-Guio, Carlos G. ;
Orazov, Marat ;
Higgins, Drew C. ;
Hahn, Christopher ;
Jaramillo, Thomas F. .
NATURE CATALYSIS, 2019, 2 (08) :702-708
[59]   Electrochemical CO2 reduction (CO2RR) to multi-carbon products over copper-based catalysts [J].
Woldu, Abebe Reda ;
Huang, Zanling ;
Zhao, Pengxiang ;
Hu, Liangsheng ;
Astruc, Didier .
COORDINATION CHEMISTRY REVIEWS, 2022, 454
[60]   Enhanced selectivity of carbonaceous products from electrochemical reduction of CO2 in aqueous media [J].
Xiang, Hang ;
Rasul, Shahid ;
Scott, Keith ;
Portoles, Jose ;
Cumpson, Peter ;
Yu, Eileen H. .
JOURNAL OF CO2 UTILIZATION, 2019, 30 :214-221