Tuning flow-through cu-based hollow fiber gas-diffusion electrode for high-efficiency carbon monoxide (CO) electroreduction to C2+products

被引:27
作者
Rabiee, Hesamoddin [1 ,2 ,3 ]
Heffernan, James K. [4 ]
Ge, Lei [2 ,3 ]
Zhang, Xueqin [1 ]
Yan, Penghui [3 ]
Marcellin, Esteban [4 ]
Hu, Shihu [1 ]
Zhu, Zhonghua [3 ]
Wang, Hao [2 ]
Yuan, Zhiguo [1 ]
机构
[1] Univ Queensland, Australian Ctr Water & Environm Biotechnol ACWEB, St Lucia, Qld 4072, Australia
[2] Univ Southern Queensland, Ctr Future Mat, Springfield, QLD 4300, Australia
[3] Univ Queensland, Sch Chem Engn, Brisbane, QLD 4072, Australia
[4] Univ Queensland, Australian Inst Bioengn & Nanotechnol, St Lucia, QLD 4072, Australia
来源
APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY | 2023年 / 330卷
基金
澳大利亚研究理事会;
关键词
Electrochemical carbon monoxide reduction; Flow-through gas-diffusion electrode; Hollow fiber; Ethylene production; ELECTROCHEMICAL REDUCTION; ELECTROCATALYTIC CONVERSION; PH-DEPENDENCE; CATALYSTS; SELECTIVITY; PRODUCTS; ETHYLENE; INSIGHTS; DIOXIDE; HYDROCARBONS;
D O I
10.1016/j.apcatb.2023.122589
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electrochemical carbon monoxide reduction (CORR) to C2+ products has advantages over electrochemical CO2 conversion (CO2RR) as issues such as carbonation, and CO2 loss during CO2RR are omitted in CORR due to the stability of CO in alkaline solutions. Facing common challenges as CO2RR, CORR suffers more from mass transport resistance and intrinsically lower aqueous CO solubility. Therefore gas-diffusion electrodes (GDEs) are desired to boost the formation of triple phases and active sites to obtain higher reaction rates. Herein, for the first time Cu-based hollow fiber GDEs (HFGDEs) are tuned for CORR to C2+ products. By growing a layer of Cu nanocubes as the catalyst layer on HFGDEs, non-selective pristine copper HFGDE became highly selective for C2+ products (FE>90%), with ethylene as the main product (FE>65%), owing to the dominant Cu (100) facet in Cu nanocubes with high C2+ selectivity. In addition, ultra-high ethylene partial current density of > 470 mA cm(-2) at -0.8 V vs. RHE in 5.0 M KOH was obtained, owing to the abundant porosity and surface area available for triple-phase formation on microtubular GDEs and their enhanced mass transport. The electrodes exhibited one of the highest partial current densities achieved for ethylene production, indicating the promises of flow-through hollow fiber configuration for other desired products or gas-phase electrochemical reactions with low aqueous solubility.
引用
收藏
页数:10
相关论文
共 63 条
[1]   Correlation of rates of uncatalyzed and hydroxide-ion catalyzed ketene hydration. A mechanistic application and solvent isotope effects on the uncatalyzed reaction [J].
Andraos, J ;
Kresge, AJ .
CANADIAN JOURNAL OF CHEMISTRY, 2000, 78 (04) :508-515
[2]   The role of in situ generated morphological motifs and Cu(i) species in C2+ product selectivity during CO2 pulsed electroreduction [J].
Aran-Ais, Rosa M. ;
Scholten, Fabian ;
Kunze, Sebastian ;
Rizo, Ruben ;
Roldan Cuenya, Beatriz .
NATURE ENERGY, 2020, 5 (04) :317-325
[3]   Advantages of CO over CO2 as reactant for electrochemical reduction to ethylene, ethanol and n-propanol on gas diffusion electrodes at high current densities [J].
Cuellar, N. S. Romero ;
Wiesner-Fleischer, K. ;
Fleischer, M. ;
Rucki, A. ;
Hinrichsen, O. .
ELECTROCHIMICA ACTA, 2019, 307 :164-175
[4]   CO2 electrolysis to multicarbon products at activities greater than 1 A cm-2 [J].
de Arquer, F. Pelayo Garcia ;
Cao-Thang Dinh ;
Ozden, Adnan ;
Wicks, Joshua ;
McCallum, Christopher ;
Kirmani, Ahmad R. ;
Dae-Hyun Nam ;
Gabardo, Christine ;
Seifitokaldani, Ali ;
Wang, Xue ;
Li, Yuguang C. ;
Li, Fengwang ;
Edwards, Jonathan ;
Richter, Lee J. ;
Thorpe, Steven J. ;
Sinton, David ;
Sargent, Edward H. .
SCIENCE, 2020, 367 (6478) :661-+
[5]   Facet-Dependent Selectivity of Cu Catalysts in Electrochemical CO2 Reduction at Commercially Viable Current Densities [J].
De Gregorio, Gian Luca ;
Burdyny, Tom ;
Loiudice, Anna ;
Iyengar, Pranit ;
Smith, Wilson A. ;
Buonsanti, Raffaella .
ACS CATALYSIS, 2020, 10 (09) :4854-4862
[6]   Electrochemical Reduction of CO2: Effect of Convective CO2 Supply in Gas Diffusion Electrodes [J].
Duarte, Miguel ;
De Mot, Bert ;
Hereijgers, Jonas ;
Breugelmans, Tom .
CHEMELECTROCHEM, 2019, 6 (22) :5596-5602
[7]   Understanding Surface-Mediated Electrochemical Reactions: CO2 Reduction and Beyond [J].
Dunwell, Marco ;
Luc, Wesley ;
Yan, Yushan ;
Jiao, Feng ;
Xu, Bingjun .
ACS CATALYSIS, 2018, 8 (09) :8121-8129
[8]   Structure effects on the energetics of the electrochemical reduction of CO2 by copper surfaces [J].
Durand, William J. ;
Peterson, Andrew A. ;
Studt, Felix ;
Abild-Pedersen, Frank ;
Norskov, Jens K. .
SURFACE SCIENCE, 2011, 605 (15-16) :1354-1359
[9]   Plasma-Activated Copper Nanocube Catalysts for Efficient Carbon Dioxide Electroreduction to Hydrocarbons and Alcohols [J].
Gao, Dunfeng ;
Zegkinoglou, Ioannis ;
Divins, Nuria J. ;
Scholten, Fabian ;
Sinev, Ilya ;
Grosse, Philipp ;
Roldan Cuenya, Beatriz .
ACS NANO, 2017, 11 (05) :4825-4831
[10]   Electrochemical CO2 reduction in membrane-electrode assemblies [J].
Ge, Lei ;
Rabiee, Hesamoddin ;
Li, Mengran ;
Subramanian, Siddhartha ;
Zheng, Yao ;
Lee, Joong Hee ;
Burdyny, Thomas ;
Wang, Hao .
CHEM, 2022, 8 (03) :663-692