Web Phishing Classification Model using Artificial Neural Network and Deep Learning Neural Network

被引:0
|
作者
Hassan, Noor Hazirah [1 ]
Fakharudin, Abdul Sahli [1 ]
机构
[1] Univ Malaysia Pahang, Fac Comp, Pekan, Pahang, Malaysia
关键词
Phishing website; classification; artificial neural network; convolutional neural network; machine learning;
D O I
10.14569/IJACSA.2023.0140759
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Phishing is an online crime in which a cybercriminal tries to persuade internet users to reveal important and sensitive personal information, such as bank account details, usernames, passwords, and social security numbers, to the phisher, usually for mean purposes. The target victim of the fraud suffers a financial loss, as well as the loss of personal information and reputation. Therefore, it is essential to identify an effective approach for phishing website classification. Machine learning approaches have been applied in the classification of phishing websites in recent years. The objectives of this research are to classify phishing websites using artificial neural network (ANN) and convolutional neural network (CNN) and then compare the results of the models. This study uses a phishing website dataset collected from the machine learning database, University of California, Irvine (UCI). There were nine input attributes and three output classes that represent types of websites either legitimate, suspicious, or phishing. The data was split into 70% and 30% for training and testing purposes, respectively. The results indicate that the modified ANN with Rectified Linear Unit (ReLU) activation function model outperforms other models by achieving the least average of root mean square error (RMSE) value for testing which is 0.2703, while the CNN model produced the least average RMSE for training which is 0.2631. ANN with Sigmoid activation function model obtained the highest average RMSE of 0.3516 for training and 0.3585 for testing.
引用
收藏
页码:535 / 542
页数:8
相关论文
共 50 条
  • [1] Automated text classification using a dynamic artificial neural network model
    Ghiassi, M.
    Olschimke, M.
    Moon, B.
    Arnaudo, P.
    EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (12) : 10967 - 10976
  • [2] Phishing URL detection by using Artificial Neural Network with PSO
    Gupta, Surbhi
    Singhal, Abhishek
    2017 2ND INTERNATIONAL CONFERENCE ON TELECOMMUNICATION AND NETWORKS (TEL-NET), 2017, : 341 - 346
  • [3] Floriculture Classification using Simple Neural Network and Deep Learning
    Dharwadkar, Shrikant
    Bhat, Ganesh
    Reddy, N. V. Subba
    Aithal, Prakash K.
    2017 2ND IEEE INTERNATIONAL CONFERENCE ON RECENT TRENDS IN ELECTRONICS, INFORMATION & COMMUNICATION TECHNOLOGY (RTEICT), 2017, : 619 - 622
  • [4] Kidney stone classification using deep learning neural network
    Vasudeva, Nisha
    Sharma, Vivek Kumar
    Sharma, Shashi
    Sharma, Ravi Shankar
    Sharma, Satyajeet
    Sharma, Gajanand
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2023, 26 (05) : 1393 - 1401
  • [5] Classification of Breast Abnormalities Using Artificial Neural Network
    Zaman, Nur Atiqah Kamarul
    Rahman, Wan Eny Zarina Wan Abdul
    Jumaat, Abdul Kadir
    Yasiran, Siti Salmah
    INTERNATIONAL CONFERENCE ON MATHEMATICS, ENGINEERING AND INDUSTRIAL APPLICATIONS 2014 (ICOMEIA 2014), 2015, 1660
  • [6] Classification of Galaxy Morphologies using Artificial Neural Network
    Biswas, Manish
    Adlak, Ritesh
    2018 4TH INTERNATIONAL CONFERENCE FOR CONVERGENCE IN TECHNOLOGY (I2CT), 2018,
  • [7] Classification of Stress Recognition using Artificial Neural Network
    Alic, Berina
    Sejdinovic, Dijana
    Gurbeta, Lejla
    Badnjevic, Almir
    2016 5TH MEDITERRANEAN CONFERENCE ON EMBEDDED COMPUTING (MECO), 2016, : 297 - 300
  • [8] Classification of Robotic Data using Artificial Neural Network
    Gopalapillai, Radhakrishnan
    Vidhya, J.
    Gupta, Deepa
    Sudarshan, T. S. B.
    2013 IEEE RECENT ADVANCES IN INTELLIGENT COMPUTATIONAL SYSTEMS (RAICS), 2013, : 333 - 337
  • [9] YNOVEL WEB SEARCH FOR DATA ACCESSIBILITY USING CONVOLUTION NEURAL NETWORK COMPARING WITH ARTIFICIAL NEURAL NETWORK
    Abhishek, A.
    Anithaashri, T. P.
    INTERNATIONAL JOURNAL OF EARLY CHILDHOOD SPECIAL EDUCATION, 2022, 14 (03) : 5580 - 5586
  • [10] Wetland Classification Using Deep Convolutional Neural Network
    Mandianpari, Masoud
    Rezaee, Mohammad
    Zhang, Yun
    Salehi, Bahram
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 9249 - 9252