Digital Twin-Driven Remaining Useful Life Prediction for Rolling Element Bearing

被引:7
作者
Lu, Quanbo [1 ]
Li, Mei [1 ]
机构
[1] China Univ Geosci, Sch Informat Engn, Beijing 100083, Peoples R China
关键词
digital twin; remaining useful life; rolling element bearing; LSTM; PROGNOSTICS; NETWORK; MODEL; RUL;
D O I
10.3390/machines11070678
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Traditional methods for predicting remaining useful life (RUL) ignore the correlation between physical world data and virtual world data, leading to the low prediction accuracy of RUL and affecting the normal working of rolling element bearing (REB). To solve the above problem, we propose a hybrid method based on digital twin (DT) and long short-term memory (LSTM). The hybrid method combines the high simulation capabilities of DT and the strong data processing capabilities of LSTM. Firstly, we develop a DT system for the life characteristics analysis of an REB. When the DT system is implemented, we can obtain the theoretical value of RUL. Then, the experimental data is used to train the LSTM model. The output of LSTM is the actual value of RUL. Finally, the particle swarm optimization (PSO) algorithm fuses the theoretical values of DT with the actual values of LSTM. The case study demonstrates that the prediction accuracy of the hybrid method is greater than 97.5%, which improves the prediction performance and robustness of RUL. Therefore, the hybrid method is an important technology of REB prediction and health management (PHM). It realizes the early intervention and maintenance of mechanical equipment and ensures the safety of enterprises' production.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Remaining Useful Life Prediction of Rolling Element Bearings Based on Unscented Kalman Filter
    Qi, Junyu
    Mauricio, Alexadre
    Sarrazin, Mathieu
    Janssens, Karl
    Gryllias, Konstantinos
    ADVANCES IN CONDITION MONITORING OF MACHINERY IN NON-STATIONARY OPERATIONS (CMMNO 2018), 2019, 15 : 111 - 121
  • [32] Leveraging Label Information in a Knowledge-Driven Approach for Rolling-Element Bearings Remaining Useful Life Prediction
    Berghout, Tarek
    Benbouzid, Mohamed
    Mouss, Leila-Hayet
    ENERGIES, 2021, 14 (08)
  • [33] Remaining useful life prediction of rolling element bearings based on health state assessment
    Liu, Zhiliang
    Zuo, Ming J.
    Qin, Yong
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2016, 230 (02) : 314 - 330
  • [34] Remaining useful life prediction method of rolling bearing based on Transformer model
    Zhou Z.
    Liu L.
    Song X.
    Chen K.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2023, 49 (02): : 430 - 443
  • [35] Long-range dependence and heavy tail characteristics for remaining useful life prediction in rolling bearing degradation
    Song, Wanqing
    Liu, He
    Zio, Enrico
    APPLIED MATHEMATICAL MODELLING, 2022, 102 : 268 - 284
  • [36] REMAINING USEFUL LIFE (RUL) PREDICTION OF ROLLING ELEMENT BEARING USING RANDOM FOREST AND GRADIENT BOOSTING TECHNIQUE
    Patil, Sangram
    Patil, Aum
    Handikherkar, Vishwadeep
    Desai, Sumit
    Phalle, Vikas M.
    Kazi, Faruk S.
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2018, VOL 13, 2019,
  • [37] Digital twin-driven partial domain adaptation network for intelligent fault diagnosis of rolling bearing
    Zhang, Yongchao
    Ji, J. C.
    Ren, Zhaohui
    Ni, Qing
    Gu, Fengshou
    Feng, Ke
    Yu, Kun
    Ge, Jian
    Lei, Zihao
    Liu, Zheng
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2023, 234
  • [38] Remaining Useful Life Prediction of Rolling Element Bearings Based on Hybrid Drive of Data and Model
    Wang, Xin
    Cui, Lingli
    Wang, Huaqing
    IEEE SENSORS JOURNAL, 2022, 22 (17) : 16985 - 16993
  • [39] An adaptive data-driven method for accurate prediction of remaining useful life of rolling bearings
    Peng, Yanfeng
    Cheng, Junsheng
    Liu, Yanfei
    Li, Xuejun
    Peng, Zhihua
    FRONTIERS OF MECHANICAL ENGINEERING, 2018, 13 (02) : 301 - 310
  • [40] Auxiliary Particle Filter-Based Remaining Useful Life Prediction of Rolling Bearing
    Deng, Shengcai
    Chen, Zhiqiang
    Chen, Zhuo
    2017 INTERNATIONAL CONFERENCE ON SENSING, DIAGNOSTICS, PROGNOSTICS, AND CONTROL (SDPC), 2017, : 15 - 19