Digital Twin-Driven Remaining Useful Life Prediction for Rolling Element Bearing

被引:4
|
作者
Lu, Quanbo [1 ]
Li, Mei [1 ]
机构
[1] China Univ Geosci, Sch Informat Engn, Beijing 100083, Peoples R China
关键词
digital twin; remaining useful life; rolling element bearing; LSTM; PROGNOSTICS; NETWORK; MODEL; RUL;
D O I
10.3390/machines11070678
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Traditional methods for predicting remaining useful life (RUL) ignore the correlation between physical world data and virtual world data, leading to the low prediction accuracy of RUL and affecting the normal working of rolling element bearing (REB). To solve the above problem, we propose a hybrid method based on digital twin (DT) and long short-term memory (LSTM). The hybrid method combines the high simulation capabilities of DT and the strong data processing capabilities of LSTM. Firstly, we develop a DT system for the life characteristics analysis of an REB. When the DT system is implemented, we can obtain the theoretical value of RUL. Then, the experimental data is used to train the LSTM model. The output of LSTM is the actual value of RUL. Finally, the particle swarm optimization (PSO) algorithm fuses the theoretical values of DT with the actual values of LSTM. The case study demonstrates that the prediction accuracy of the hybrid method is greater than 97.5%, which improves the prediction performance and robustness of RUL. Therefore, the hybrid method is an important technology of REB prediction and health management (PHM). It realizes the early intervention and maintenance of mechanical equipment and ensures the safety of enterprises' production.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Prediction of fault evolution and remaining useful life for rolling bearings with spalling fatigue using digital twin technology
    Weiying Meng
    Yutong Wang
    Xiaochen Zhang
    Sihui Li
    Xu Bai
    Lingling Hou
    Applied Intelligence, 2023, 53 : 28611 - 28626
  • [22] Prediction of fault evolution and remaining useful life for rolling bearings with spalling fatigue using digital twin technology
    Meng, Weiying
    Wang, Yutong
    Zhang, Xiaochen
    Li, Sihui
    Bai, Xu
    Hou, Lingling
    APPLIED INTELLIGENCE, 2023, 53 (23) : 28611 - 28626
  • [23] Remaining useful life prediction method of rolling bearing based on Transformer model
    Zhou Z.
    Liu L.
    Song X.
    Chen K.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2023, 49 (02): : 430 - 443
  • [24] A novel vision transformer network for rolling bearing remaining useful life prediction
    Hu, Aijun
    Zhu, Yancheng
    Liu, Suixian
    Xing, Lei
    Xiang, Ling
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (02)
  • [25] Digital twin-driven partial domain adaptation network for intelligent fault diagnosis of rolling bearing
    Zhang, Yongchao
    Ji, J. C.
    Ren, Zhaohui
    Ni, Qing
    Gu, Fengshou
    Feng, Ke
    Yu, Kun
    Ge, Jian
    Lei, Zihao
    Liu, Zheng
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2023, 234
  • [26] REMAINING USEFUL LIFE (RUL) PREDICTION OF ROLLING ELEMENT BEARING USING RANDOM FOREST AND GRADIENT BOOSTING TECHNIQUE
    Patil, Sangram
    Patil, Aum
    Handikherkar, Vishwadeep
    Desai, Sumit
    Phalle, Vikas M.
    Kazi, Faruk S.
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2018, VOL 13, 2019,
  • [27] Degradation Feature Selection for Remaining Useful Life Prediction of Rolling Element Bearings
    Zhang, Bin
    Zhang, Lijun
    Xu, Jinwu
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2016, 32 (02) : 547 - 554
  • [28] DATA-DRIVEN PREDICTION METHOD FOR REMAINING USEFUL LIFE OF ROLLING BEARINGS
    Xu, Shiyi
    Li, Tianyun
    Zhang, Yao
    PROCEEDINGS OF ASME 2024 43RD INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, OMAE2024, VOL 2, 2024,
  • [29] Digital Twin-Driven Design of an Ice Prediction Model
    Serino, Andrea
    Dagna, Alberto
    Brusa, Eugenio
    Delprete, Cristiana
    AEROSPACE, 2025, 12 (02)
  • [30] Predicting the Remaining Useful Life of Rolling Element Bearings
    Jantunen, Erkki
    Hooghoudt, Jan-Otto
    Yang, Yi
    McKay, Mark
    2018 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT), 2018, : 2035 - 2040