Exploration of Machine Learning Algorithms for pH and Moisture Estimation in Apples Using VIS-NIR Imaging

被引:3
|
作者
Kavuncuoglu, Erhan [1 ]
cetin, Necati [2 ]
Yildirim, Bekir [3 ]
Nadimi, Mohammad [4 ]
Paliwal, Jitendra [4 ]
机构
[1] Cumhuriyet Univ, Gemerek Vocat Sch, Dept Comp Technol, TR-58140 Sivas, Turkiye
[2] Ankara Univ, Fac Agr, Dept Agr Machinery & Technol Engn, TR-06110 Ankara, Turkiye
[3] Erciyes Univ, Fac Engn, Dept Text Engn, TR-74110 Kayseri, Turkiye
[4] Univ Manitoba, Dept Biosyst Engn, Winnipeg, MB R3T 5V6, Canada
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 14期
关键词
hyperspectral imaging; apple; pH; moisture content; machine learning; NONDESTRUCTIVE PREDICTION; CLASSIFICATION; SLICES;
D O I
10.3390/app13148391
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Non-destructive assessment of fruits for grading and quality determination is essential to automate pre- and post-harvest handling. Near-infrared (NIR) hyperspectral imaging (HSI) has already established itself as a powerful tool for characterizing the quality parameters of various fruits, including apples. The adoption of HSI is expected to grow exponentially if inexpensive tools are made available to growers and traders at the grassroots levels. To this end, the present study aims to explore the feasibility of using a low-cost visible-near-infrared (VIS-NIR) HSI in the 386-1028 nm wavelength range to predict the moisture content (MC) and pH of Pink Lady apples harvested at three different maturity stages. Five different machine learning algorithms, viz. partial least squares regression (PLSR), multiple linear regression (MLR), k-nearest neighbor (kNN), decision tree (DT), and artificial neural network (ANN) were utilized to analyze HSI data cubes. In the case of ANN, PLSR, and MLR models, data analysis modeling was performed using 11 optimum features identified using a Bootstrap Random Forest feature selection approach. Among the tested algorithms, ANN provided the best performance with R (correlation), and root mean squared error (RMSE) values of 0.868 and 0.756 for MC and 0.383 and 0.044 for pH prediction, respectively. The obtained results indicate that while the VIS-NIR HSI promises success in non-destructively measuring the MC of apples, its performance for pH prediction of the studied apple variety is poor. The present work contributes to the ongoing research in determining the full potential of VIS-NIR HSI technology in apple grading, maturity assessment, and shelf-life estimation.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] DETECTION OF SURFACE AND SUBSURFACE DEFECTS OF APPLES USING STRUCTURED-ILLUMINATION REFLECTANCE IMAGING WITH MACHINE LEARNING ALGORITHMS
    Lu, Y.
    Lu, R.
    TRANSACTIONS OF THE ASABE, 2018, 61 (06) : 1831 - 1842
  • [22] Quantitative analysis and visualization of moisture and anthocyanins content in purple sweet potato by Vis-NIR hyperspectral imaging
    Tian, Xiao-Yu
    Aheto, Joshua H.
    Bai, Jun-Wen
    Dai, Chunxia
    Ren, Yi
    Chang, Xianhui
    JOURNAL OF FOOD PROCESSING AND PRESERVATION, 2021, 45 (02)
  • [23] Robust method for detecting metanil yellow in turmeric: Integrating Vis-NIR spectroscopy and machine learning
    Lanjewar, Madhusudan G.
    Morajkar, Pranay P.
    Parab, Jivan
    JOURNAL OF FOOD COMPOSITION AND ANALYSIS, 2025, 142
  • [24] Nondestructive Detection of Codling Moth Infestation in Apples Using Pixel-Based NIR Hyperspectral Imaging with Machine Learning and Feature Selection
    Ekramirad, Nader
    Khaled, Alfadhl Y.
    Doyle, Lauren E.
    Loeb, Julia R.
    Donohue, Kevin D.
    Villanueva, Raul T.
    Adedeji, Akinbode A.
    FOODS, 2022, 11 (01)
  • [25] Fast detection and visualization of early decay in citrus using Vis-NIR hyperspectral imaging
    Li, Jiangbo
    Huang, Wenqian
    Tian, Xi
    Wang, Chaopeng
    Fan, Shuxiang
    Zhao, Chunjiang
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2016, 127 : 582 - 592
  • [26] A new quantitative index for the assessment of tomato quality using Vis-NIR hyperspectral imaging
    Shao, Yuanyuan
    Shi, Yukang
    Qin, Yongdong
    Xuan, Guantao
    Li, Jing
    Li, Quankai
    Yang, Fengjuan
    Hu, Zhichao
    FOOD CHEMISTRY, 2022, 386
  • [27] Using Machine-Learning Algorithms to Predict Soil Organic Carbon Content from Combined Remote Sensing Imagery and Laboratory Vis-NIR Spectral Datasets
    Zayani, Hayfa
    Fouad, Youssef
    Michot, Didier
    Kassouk, Zeineb
    Baghdadi, Nicolas
    Vaudour, Emmanuelle
    Lili-Chabaane, Zohra
    Walter, Christian
    REMOTE SENSING, 2023, 15 (17)
  • [28] Ripeness monitoring of two cultivars of nectarine using VIS-NIR hyperspectral reflectance imaging
    Munera, Sandra
    Amigo, Jose Manuel
    Blasco, Jose
    Cubero, Sergio
    Talens, Pau
    Aleixos, Nuria
    JOURNAL OF FOOD ENGINEERING, 2017, 214 : 29 - 39
  • [29] Detection of Insect Damage in Green Coffee Beans Using VIS-NIR Hyperspectral Imaging
    Chen, Shih-Yu
    Chang, Chuan-Yu
    Ou, Cheng-Syue
    Lien, Chou-Tien
    REMOTE SENSING, 2020, 12 (15)
  • [30] A Survey on Hyperspectral Imaging for Mineral Exploration using Machine Learning Algorithms
    Sudharsan, S.
    Hemalatha, R.
    Radha, S.
    2019 INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, SIGNAL PROCESSING AND NETWORKING (WISPNET 2019): ADVANCING WIRELESS AND MOBILE COMMUNICATIONS TECHNOLOGIES FOR 2020 INFORMATION SOCIETY, 2019, : 206 - 212