Improved Caffarelli-Kohn-Nirenb erg inequalities in unit ball and sharp constants in dimension three

被引:1
作者
Dan, Su [1 ]
Yang, Qiaohua [2 ]
机构
[1] Univ Int Business & Econ, Sch Stat, Beijing 100029, Peoples R China
[2] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
Hardy inequality; Sobolev inequality; Caffarelli-Kohn-Nirenb erg; inequalities; Hyperbolic space; Sharp constant; SOBOLEV; HARDY; SPACES; SYMMETRY;
D O I
10.1016/j.na.2023.113314
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the Caffarelli-Kohn-Nirenb erg inequalities in unit ball Bn can be improved by subtraction of Hardy term. In three dimension and 0 & LE; a < 21, we show that the sharp constant coincides with that in R3. This is an analogous result to that of the sharp constant in the n-1 2-th order Hardy-Sobolev-Maz'ya inequality in the unit ball of dimension n when n is odd. As an application, we obtain a sharp Sobolev inequality on hyperbolic Caffarelli-Kohn-Nirenb erg space introduced by L. Dupaigne, I. Gentil and S. Zugmeyer. & COPY; 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页数:17
相关论文
共 26 条
[21]   Green's functions of Paneitz and GJMS operators on hyperbolic spaces and sharp Hardy-Sobolev-Maz'ya inequalities on half spaces [J].
Lu, Guozhen ;
Yang, Qiaohua .
ADVANCES IN MATHEMATICS, 2022, 398
[22]   PANEITZ OPERATORS ON HYPERBOLIC SPACES AND HIGH ORDER HARDY-SOBOLEV-MAZ'YA INEQUALITIES ON HALF SPACES [J].
Lu, Guozhen ;
Yang, Qiaohua .
AMERICAN JOURNAL OF MATHEMATICS, 2019, 141 (06) :1777-1816
[23]  
Mancini G, 2008, ANN SCUOLA NORM-SCI, V7, P635
[24]   Closed form formulae for the heat kernels and the green functions for the Laplacians on the symmetric spaces of rank one [J].
Matsumoto, H .
BULLETIN DES SCIENCES MATHEMATIQUES, 2001, 125 (6-7) :553-581
[25]  
Mazya V. G., 1985, SOBOLEV SPACES, DOI 10.1007/978-3-662-09922-3
[26]  
Talenti G., 1976, ANN MAT PUR APPL, V110, P353, DOI [10.1007/BF02418013, DOI 10.1007/BF02418013]