Improved Caffarelli-Kohn-Nirenb erg inequalities in unit ball and sharp constants in dimension three

被引:1
作者
Dan, Su [1 ]
Yang, Qiaohua [2 ]
机构
[1] Univ Int Business & Econ, Sch Stat, Beijing 100029, Peoples R China
[2] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
Hardy inequality; Sobolev inequality; Caffarelli-Kohn-Nirenb erg; inequalities; Hyperbolic space; Sharp constant; SOBOLEV; HARDY; SPACES; SYMMETRY;
D O I
10.1016/j.na.2023.113314
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the Caffarelli-Kohn-Nirenb erg inequalities in unit ball Bn can be improved by subtraction of Hardy term. In three dimension and 0 & LE; a < 21, we show that the sharp constant coincides with that in R3. This is an analogous result to that of the sharp constant in the n-1 2-th order Hardy-Sobolev-Maz'ya inequality in the unit ball of dimension n when n is odd. As an application, we obtain a sharp Sobolev inequality on hyperbolic Caffarelli-Kohn-Nirenb erg space introduced by L. Dupaigne, I. Gentil and S. Zugmeyer. & COPY; 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页数:17
相关论文
共 26 条
[1]  
Ahlfors Lars V., 1981, ORDWAY PROFESSORSHIP
[2]  
AUBIN T, 1976, B SCI MATH, V100, P149
[3]   On the Grushin operator and hyperbolic symmetry [J].
Beckner, W .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (04) :1233-1246
[4]   Symmetry in Fourier Analysis: Heisenberg Group to Stein-Weiss Integrals [J].
Beckner, William .
JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (07) :7008-7035
[5]  
Benguria RD, 2008, MATH RES LETT, V15, P613
[6]   Hardy-Rellich and second order Poincare identities on the hyperbolic space via Bessel pairs [J].
Berchio, Elvise ;
Ganguly, Debdip ;
Roychowdhury, Prasun .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (04)
[7]   On some strong Poincare inequalities on Riemannian models and their improvements [J].
Berchio, Elvise ;
Ganguly, Debdip ;
Roychowdhury, Prasun .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 490 (01)
[8]   Sharp Poincare Hardy and Poincare Rellich inequalities on the hyperbolic space [J].
Berchio, Elvise ;
Ganguly, Debdip ;
Grillo, Gabriele .
JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 272 (04) :1661-1703
[9]   IMPROVED HIGHER ORDER POINCARE INEQUALITIES ON THE HYPERBOLIC SPACE VIA HARDY-TYPE REMAINDER TERMS [J].
Berchio, Elvise ;
Ganguly, Debdip .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2016, 15 (05) :1871-1892
[10]  
CAFFARELLI L, 1984, COMPOS MATH, V53, P259