Extensions of solvable Lie algebras with naturally graded filiform nilradical

被引:0
作者
Khudoyberdiyev, A. Kh. [1 ]
Sheraliyeva, S. A. [1 ]
机构
[1] Natl Univ Uzbekistan, Inst Math, Acad Sci Uzbekistan, Tashkent 100174, Uzbekistan
关键词
Nilpotent Lie algebras; solvable Lie algebras; filiform Lie algebras; central extension of nilpotent Lie algebras; extension of solvable Lie algebras; nilradical; GEOMETRIC CLASSIFICATION; NULL-FILIFORM;
D O I
10.1142/S0219498824501615
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we consider extensions of solvable Lie algebras with naturally graded filiform nilradicals. Note that there exist two naturally graded filiform Lie algebras nn,1 and Q(2n). We find all one-dimensional extensions of solvable Lie algebras with nilradical n(n,1). We prove that there exists a unique non-split central extension of solvable Lie algebras with nilradical n(n,1) of maximal codimension. Moreover, all one-dimensional extensions of solvable Lie algebras with nilradical n(n,1) whose codimension is equal to one are found and we compared these solvable algebras with the solvable algebras with nilradicals that are one-dimensional central extension of algebra n(n,1).
引用
收藏
页数:33
相关论文
共 30 条
  • [1] The algebraic and geometric classification of nilpotent binary Lie algebras
    Abdelwahab, Hani
    Jesus Calderon, Antonio
    Kaygorodov, Ivan
    [J]. INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2019, 29 (06) : 1113 - 1129
  • [2] Central extensions of null-filiform and naturally graded filiform non-Lie Leibniz algebras
    Adashev, J. K.
    Camacho, L. M.
    Omirov, B. A.
    [J]. JOURNAL OF ALGEBRA, 2017, 479 : 461 - 486
  • [3] The algebraic and geometric classification of nilpotent left-symmetric algebras
    Adashev, Jobir
    Kaygorodov, Ivan
    Khudoyberdiyev, Abror
    Sattarov, Aloberdi
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2021, 167
  • [4] Classification of Lie algebras with naturally graded quasi-filiform nilradicals
    Ancochea Bermudez, J. M.
    Campoamor-Stursberg, R.
    Garcia Vergnolle, L.
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (11) : 2168 - 2186
  • [5] Solvable Lie algebras with naturally graded nilradicals and their invariants
    Ancochea, JM
    Campoamor-Stursberg, R
    Vergnolle, LG
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (06): : 1339 - 1355
  • [6] The classification of n-dimensional anticommutative algebras with (n-3)-dimensional annihilator
    Calderon, Antonio Jesus
    Ouaridi, Amir Fernandez
    Kaygorodov, Ivan
    [J]. COMMUNICATIONS IN ALGEBRA, 2019, 47 (01) : 173 - 181
  • [7] Central extensions of filiform Zinbiel algebras
    Camacho, Luisa M.
    Karimjanov, Iqboljon
    Kaygorodov, Ivan
    Khudoyberdiyev, Abror
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (08) : 1479 - 1495
  • [8] One-generated nilpotent Novikov algebras
    Camacho, Luisa M.
    Karimjanov, Iqboljon
    Kaygorodov, Ivan
    Khudoyberdiyev, Abror
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (02) : 331 - 365
  • [9] Six-dimensional nilpotent Lie algebras
    Cicalo, Serena
    de Graaf, Willem A.
    Schneider, Csaba
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (01) : 163 - 189
  • [10] Classification of 6-dimensional nilpotent Lie algebras over fields of characteristic not 2
    de Graaf, Willem A.
    [J]. JOURNAL OF ALGEBRA, 2007, 309 (02) : 640 - 653