Effect of varying carbon microstructures on the ion storage behavior of dual carbon lithium-ion capacitor

被引:6
作者
Bhattacharjee, Udita [1 ]
Gautam, Abhay [1 ]
Martha, Surendra K. [1 ]
机构
[1] Indian Inst Technol Hyderabad, Dept Chem, Sangareddy 502284, Telangana, India
关键词
Dual carbon lithium -ion capacitor; Carbon microstructure; Electrochemistry; Ion -storage mechanism; HIGH-ENERGY; ACTIVATED CARBON; SPECTROSCOPY; ELECTRODES; BIOMASS; ANODE;
D O I
10.1016/j.electacta.2023.142353
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Dual carbon lithium-ion capacitors (LICs) are the next-generation hybrid energy storage devices that aim towards energy-power balanced applications. Thus, tuning the properties of the carbon electrode materials is a crucial step toward optimizing the device's performance. Herein, the effect of change in the microstructure of the carbon electrodes on the ion storage capacity and their consequent energy-power manifestation is investigated. The optimized carbonaceous anode calcined at 700 degrees C delivers 290 mAh g(-1) capacity after 1000 cycles at 1 A g(-1). This superiority in performance is attributed to the formation of micron-size channels and mesopores for better ion transport and storage. In contrast, the activated carbon cathode delivers a capacitance of 118 F g(-1) and retains 76% at the end of 5000 cycles. The LIC full cell with these electrode materials provides maximum energy of 120 Wh kg(-1), a maximum power density of 20.7 kW kg(-1) and cycles till 9000 cycles with similar to 67% capacitance retention. The mechanistic control over the deliverable ion storage capacity is also analyzed for the LIC full cell. Furthermore, the lighting demonstration, self-discharge studies, leakage current, and electrochemical impedance are recorded to elucidate the practical feasibility and performance degradation mechanism of the coin-cell device.
引用
收藏
页数:10
相关论文
共 50 条
[21]   Lithium storage performance of carbon nanotubes prepared from polyaniline for lithium-ion batteries [J].
Xiang, Xiaoxia ;
Huang, Zhengzheng ;
Liu, Enhui ;
Shen, Haijie ;
Tian, Yingying ;
Xie, Hui ;
Wu, Yuhu ;
Wu, Zhilian .
ELECTROCHIMICA ACTA, 2011, 56 (25) :9350-9356
[22]   Application of prelithiated nanoporous carbon anode for high-power lithium-ion capacitor [J].
Okabe, Jugo ;
Notohara, Hiroo ;
Urita, Koki ;
Moriguchi, Isamu .
CHEMISTRY LETTERS, 2024, 53 (11)
[23]   Progress in Lithium Storage Mechanism and Optimizing Lithium Storage Performance of Hard Carbon Anodes for Lithium-ion Batteries [J].
Shu, Qiqi ;
Lian, Fei ;
Liang, Chenli ;
Zhang, Qingtang .
Cailiao Daobao/Materials Reports, 2024, 38 (13)
[24]   Three-dimensional interconnected porous carbon nanoflakes with improved electron transfer and ion storage for lithium-ion batteries [J].
Zhang, Di ;
Su, Weiwei ;
Li, Zhaojin ;
Wang, Qiujun ;
Yuan, Fei ;
Sun, Haitao ;
Li, Yazhao ;
Zhang, Yan ;
Wang, Bo .
JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 904
[25]   Carbon materials for lithium-ion rechargeable batteries [J].
Flandrois, S ;
Simon, B .
CARBON, 1999, 37 (02) :165-180
[26]   CARBON ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES [J].
LI, GB ;
XUE, RJ ;
CHEN, LQ ;
HUANG, YZ .
JOURNAL OF POWER SOURCES, 1995, 54 (02) :271-275
[27]   Graphitized Carbon Xerogels for Lithium-Ion Batteries [J].
Canal-Rodriguez, Maria ;
Arenillas, Ana ;
Villanueva, Sara F. ;
Montes-Moran, Miguel A. ;
Angel Menenedez, J. .
MATERIALS, 2020, 13 (01)
[28]   Cesium Ion-Mediated Microporous Carbon for CO2 Capture and Lithium-Ion Storage [J].
Lee, Hyeon Jeong ;
Ko, Dongah ;
Kim, Joo-Seong ;
Park, Youngbin ;
Hwang, Insu ;
Yavuz, Cafer T. ;
Choi, Jang Wook .
CHEMNANOMAT, 2021, 7 (02) :150-157
[29]   A Comparative Study on the Lithium-Ion Storage Performances of Carbon Nanotubes and Tube-in-Tube Carbon Nanotubes [J].
Xu, Yi-Jun ;
Liu, Xi ;
Cui, Guanglei ;
Zhu, Bo ;
Weinberg, Gisela ;
Schloegl, Robert ;
Maier, Joachim ;
Su, Dang Sheng .
CHEMSUSCHEM, 2010, 3 (03) :343-349
[30]   Carbon-slurry optimization for lithium-ion batteries customization [J].
Orozco-Gallo, D. C. ;
Vasquez-Arroyave, F. A. ;
Calderon-Gutierrez, J. A. .
ELECTROCHIMICA ACTA, 2023, 467