Multiplication Circuit Architecture for Error- Tolerant CNN-Based Keywords Speech Recognition

被引:0
作者
Liu, Bo [1 ]
Cai, Hao [1 ]
Zhang, Zilong [1 ]
Ding, Xiaoling [1 ]
Zhang, Renyuan [1 ]
Gong, Yu [1 ]
Wang, Zhen [2 ]
Ge, Wei [1 ]
Yang, Jun [1 ]
机构
[1] Southeast Univ, Natl ASIC Syst Engn Ctr, Nanjing 210096, Peoples R China
[2] Nanjing Prochip Elect Technol Co Ltd, Nanjing 210001, Peoples R China
基金
国家重点研发计划;
关键词
Encoding; Power demand; Adders; Tensors; Convolutional neural networks; Computer architecture; Speech recognition; Approximate tensor multiplication; complementary compensation encoding; precision reconfigurable approximate computing; keywords speech recognition;
D O I
10.1109/MDAT.2021.3135346
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Editor's notes: A circuit architecture is designed to utilize Booth encoding for the multiplication of two vectors of data. This architecture is configured to use approximate encoding and addition and a lower voltage for the approximate circuits to improve energy efficiency. Integrating this design into a convolutional neural network leads to a rather significant reduction in energy with a slight accuracy loss for speech recognition. -Jie Han, University of Alberta
引用
收藏
页码:26 / 35
页数:10
相关论文
共 12 条
[1]   Approximate radix-8 Booth multiplier for low power and high speed applications [J].
Boro, Bipul ;
Reddy, K. Manikantta ;
Kumar, Y. B. Nithin ;
Vasantha, M. H. .
MICROELECTRONICS JOURNAL, 2020, 101 (101)
[2]   ARA: Cross-Layer approximate computing framework based reconfigurable architecture for CNNs [J].
Gong, Yu ;
Liu, Bo ;
Ge, Wei ;
Shi, Longxing .
MICROELECTRONICS JOURNAL, 2019, 87 :33-44
[3]  
Horowitz M, 2014, ISSCC DIG TECH PAP I, V57, P10, DOI 10.1109/ISSCC.2014.6757323
[4]   Approximate Arithmetic Circuits: A Survey, Characterization, and Recent Applications [J].
Jiang, Honglan ;
Santiago, Francisco Javier Hernandez ;
Mo, Hai ;
Liu, Leibo ;
Han, Jie .
PROCEEDINGS OF THE IEEE, 2020, 108 (12) :2108-2135
[5]   A 22nm, 10.8 μW/15.1 μW Dual Computing Modes High Power-Performance-Area Efficiency Domained Background Noise Aware Keyword-Spotting Processor [J].
Liu, Bo ;
Cai, Hao ;
Wang, Zhen ;
Sun, Yuhao ;
Shen, Zeyu ;
Zhu, Wentao ;
Li, Yan ;
Gong, Yu ;
Ge, Wei ;
Yang, Jun ;
Shi, Longxing .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2020, 67 (12) :4733-4746
[6]   An Ultra-Low Power Always-On Keyword Spotting Accelerator Using Quantized Convolutional Neural Network and Voltage-Domain Analog Switching Network-Based Approximate Computing [J].
Liu, Bo ;
Wang, Zhen ;
Zhu, Wentao ;
Sun, Yuhao ;
Shen, Zeyu ;
Huang, Lepeng ;
Li, Yan ;
Gong, Yu ;
Ge, Wei .
IEEE ACCESS, 2019, 7 :186456-186469
[7]   Design of Approximate Radix-4 Booth Multipliers for Error-Tolerant Computing [J].
Liu, Weiqiang ;
Qian, Liangyu ;
Wang, Chenghua ;
Jiang, Honglan ;
Han, Jie ;
Lombardi, Fabrizio .
IEEE TRANSACTIONS ON COMPUTERS, 2017, 66 (08) :1435-1441
[8]   Bio-Inspired Imprecise Computational Blocks for Efficient VLSI Implementation of Soft-Computing Applications [J].
Mahdiani, H. R. ;
Ahmadi, A. ;
Fakhraie, S. M. ;
Lucas, C. .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2010, 57 (04) :850-862
[9]  
Panda P., 2016, 2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC), P1
[10]   A 510-nW Wake-Up Keyword-Spotting Chip Using Serial-FFT-Based MFCC and Binarized Depthwise Separable CNN in 28-nm CMOS [J].
Shan, Weiwei ;
Yang, Minhao ;
Wang, Tao ;
Lu, Yicheng ;
Cai, Hao ;
Zhu, Lixuan ;
Xu, Jiaming ;
Wu, Chengjun ;
Shi, Longxing ;
Yang, Jun .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2021, 56 (01) :151-164