Population and Single-Cell Analysis of Antibiotic Persistence in Escherichia coli

被引:2
作者
Oms, Thierry [1 ]
Schlechtweg, Tatjana [1 ]
Cayron, Julien [1 ]
Van Melderen, Laurence [1 ]
机构
[1] Univ Libre Bruxelles ULB, Fac Sci, Dept Biol Mol, Bacterial Genet & Physiol, Brussels, Belgium
来源
JOVE-JOURNAL OF VISUALIZED EXPERIMENTS | 2023年 / 193期
关键词
D O I
10.3791/64550
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Antibiotic persistence refers to the capacity of small bacterial subpopulations to transiently tolerate high doses of bactericidal antibiotics. Upon bactericidal antibiotic treatment, the bulk of the bacterial population is rapidly killed. This first rapid phase of killing is followed by a substantial decrease in the rate of killing as the persister cells remain viable. Classically, persistence is determined at the population level by time/kill assays performed with high doses of antibiotics and for defined exposure times. While this method provides information about the level of persister cells and the killing kinetics, it fails to reflect the intrinsic cell-to-cell heterogeneity underlying the persistence phenomenon. The protocol described here combines classical time/ kill assays with single-cell analysis using real-time fluorescence microscopy. By using appropriate fluorescent reporters, the microscopy imaging of live cells can provide information regarding the effects of the antibiotic on cellular processes, such as chromosome replication and segregation, cell elongation, and cell division. Combining population and single-cell analysis allows for the molecular and cellular characterization of the persistence phenotype.
引用
收藏
页数:22
相关论文
共 34 条
  • [1] Direct interactions of early and late assembling division proteins in Escherichia coli cells resolved by FRET
    Alexeeva, Svetlana
    Gadella, Theodorus W. J., Jr.
    Verheul, Jolanda
    Verhoeven, Gertjan S.
    den Blaauwen, Tanneke
    [J]. MOLECULAR MICROBIOLOGY, 2010, 77 (02) : 384 - 398
  • [2] Balaban NQ, 2019, NAT REV MICROBIOL, V17, P441, DOI 10.1038/s41579-019-0196-3
  • [3] Bacterial persistence as a phenotypic switch
    Balaban, NQ
    Merrin, J
    Chait, R
    Kowalik, L
    Leibler, S
    [J]. SCIENCE, 2004, 305 (5690) : 1622 - 1625
  • [4] Distinguishing between resistance, tolerance and persistence to antibiotic treatment
    Brauner, Asher
    Fridman, Ofer
    Gefen, Orit
    Balaban, Nathalie Q.
    [J]. NATURE REVIEWS MICROBIOLOGY, 2016, 14 (05) : 320 - 330
  • [5] Antibiotic Persistence as a Metabolic Adaptation: Stress, Metabolism, the Host, and New Directions
    Cabral, Damien J.
    Wurster, Jenna I.
    Belenky, Peter
    [J]. PHARMACEUTICALS, 2018, 11 (01)
  • [6] A Genetic Determinant of Persister Cell Formation in Bacterial Pathogens
    Cameron, David R.
    Shan, Yue
    Zalis, Eliza A.
    Isabella, Vincent
    Lewis, Kim
    [J]. JOURNAL OF BACTERIOLOGY, 2018, 200 (17)
  • [7] Identification of Genes Involved in Bacteriostatic Antibiotic-Induced Persister Formation
    Cui, Peng
    Niu, Hongxia
    Shi, Wanliang
    Zhang, Shuo
    Zhang, Wenhong
    Zhang, Ying
    [J]. FRONTIERS IN MICROBIOLOGY, 2018, 9
  • [8] Ducret A, 2016, NAT MICROBIOL, V1, DOI [10.1038/NMICROBIOL.2016.77, 10.1038/nmicrobiol.2016.77]
  • [9] Red fluorescent genetically encoded indicator for intracellular hydrogen peroxide
    Ermakova, Yulia G.
    Bilan, Dmitry S.
    Matlashov, Mikhail E.
    Mishina, Natalia M.
    Markvicheva, Ksenia N.
    Subach, Oksana M.
    Subach, Fedor V.
    Bogeski, Ivan
    Hoth, Markus
    Enikolopov, Grigori
    Belousov, Vsevolod V.
    [J]. NATURE COMMUNICATIONS, 2014, 5
  • [10] Four-Dimensional Imaging of E. coli Nucleoid Organization and Dynamics in Living Cells
    Fisher, Jay K.
    Bourniquel, Aude
    Witz, Guillaume
    Weiner, Beth
    Prentiss, Mara
    Kleckner, Nancy
    [J]. CELL, 2013, 153 (04) : 882 - 895