Spectral stability and dynamics of solitary waves in a coupled nonlinear left-handed transmission line

被引:1
|
作者
Mahmoud, Dahirou [1 ]
Abdoulkary, Saidou [2 ]
Mohamadou, Alidou [3 ,4 ]
机构
[1] Univ Maroua, Fac Sci, Dept Phys, PO Box 46, Maroua, Cameroon
[2] Univ Maroua, Dept Sci Fondamentales, ENSMIP, PO Box 08, Kaele, Cameroon
[3] Univ Maroua, Natl Adv Sch Engn, Maroua, Cameroon
[4] Abdus Salam Int Ctr Theoret Phys, PO Box 538, Str costiera 11, I-34014 Trieste, Italy
关键词
SCHRODINGER-EQUATION; SOLITONS;
D O I
10.1140/epjp/s13360-023-03885-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the dynamics of modulated waves in a discrete coupled left-handed nonlinear transmission line, assuming a two-dimensional propagations variations. By means of semi-discrete approximation, we derive a two-dimensional nonlinear Schrodinger equation (2D NLSE) governing the propagation of modulated waves in the network. We derive linear boundary value problem governing the evolution of the perturbed system. We then compute numerically its eigenvalues using Fourier and finite difference differentiation matrices. Our results show that the system supports bright soliton in relatively frequency band in both transverse and longitudinal directions. We perform numerical simulations of both 2D NLSE and the nonlinear lattice model to study the stability (instability) and the propagation properties of an initial bright soliton. Our numerical results are in good agreement with the analytical predictions.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Existence, stability and dynamics of solitary waves in spinor dynamical lattices
    Shi, Z.
    Susanto, H.
    Horne, R. L.
    Whitaker, N.
    Kevrekidis, P. G.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (50)
  • [32] SPECTRAL STABILITY AND INSTABILITY OF SOLITARY WAVES OF THE DIRAC EQUATION WITH CONCENTRATED NONLINEARITY
    Boussaid, Nabile
    Cacciapuoti, Claudio
    Carlone, Raffaele
    Comech, Andrew
    Noja, Diego
    Posilicano, Andrea
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2023, 22 (10) : 3029 - 3067
  • [33] Solitary Waves for Linearly Coupled Nonlinear Schrodinger Equations with Inhomogeneous Coefficients
    Belmonte-Beitia, Juan
    Perez-Garcia, Victor M.
    Torres, Pedro J.
    JOURNAL OF NONLINEAR SCIENCE, 2009, 19 (04) : 437 - 451
  • [34] Solitary waves in coupled nonlinear Schrodinger equations with spatially inhomogeneous nonlinearities
    Belmonte-Beitia, Juan
    Perez-Garcia, Victor M.
    Brazhnyi, Valeriy
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (01) : 158 - 172
  • [35] Modulational stability of solitary states in a lossy nonlinear electrical line
    Kengne, E.
    Vaillancourt, R.
    CANADIAN JOURNAL OF PHYSICS, 2009, 87 (11) : 1191 - 1202
  • [36] Head-on collision of solitary waves in coupled Korteweg-de Vries systems modeling nonlinear transmission lines
    Narahara, Koichi
    WAVE MOTION, 2014, 51 (06) : 935 - 946
  • [37] STABILITY OF BENNEY-LUKE LINE SOLITARY WAVES IN 2 DIMENSIONS
    Mizumachi, Tetsu
    Shimabukuro, Yusuke
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (05) : 4238 - 4283
  • [38] Solitary waves in the resonant nonlinear Schrodinger equation: Stability and dynamical properties
    Williams, F.
    Tsitoura, F.
    Horikis, T. P.
    Kevrekidis, P. G.
    PHYSICS LETTERS A, 2020, 384 (22)
  • [39] Exact solitary wavelike solutions in a nonlinear microtubule RLC transmission line
    Ndzana, Fabien Ii
    Mohamadou, Alidou
    CHAOS, 2019, 29 (01)
  • [40] Existence, stability and dynamics of discrete solitary waves in a binary waveguide array
    Shen, Y.
    Kevrekidis, P. G.
    Srinivasan, G.
    Aceves, A. B.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (29)