Quartic Hamiltonians, and higher Hamiltonians at next-to-leading order, for the affine sl2 Gaudin model

被引:3
作者
Franzini, Tommaso [1 ]
Young, Charles [1 ]
机构
[1] Univ Hertfordshire, Dept Phys Astron & Math, Hatfield AL10 9AB, England
关键词
integrable models; integrable systems; affine Gaudin models; Gaudin models; higher Hamiltonians; sl2 Gaudin model; higher Hamiltonians at leading order;
D O I
10.1088/1751-8121/acbacf
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this work we will use a general procedure to construct higher local Hamiltonians for the affine sl(2 )Gaudin model. We focus on the first non-trivial example, the quartic Hamiltonians. We show by direct calculation that the quartic Hamiltonians commute amongst themselves and with the quadratic Hamiltonians which define the model. We go on to introduce a certain next-to-leading order semi-classical limit of the model. In this limit, we are able to write down the full hierarchy of higher local Hamiltonians and prove that they commute.
引用
收藏
页数:24
相关论文
共 30 条
  • [21] Mukhin E, 2002, Arxiv, DOI arXiv:math/0209017
  • [22] Mukhin E, 2007, Arxiv, DOI arXiv:0711.4079
  • [23] Bethe eigenvectors of higher transfer matrices
    Mukhin, E.
    Tarasov, V.
    Varchenko, A.
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2006,
  • [24] Mukhin E, 2004, Arxiv, DOI arXiv:math/0402349
  • [25] Uniqueness of higher Gaudin Hamiltonians
    Rybnikov, L. G.
    [J]. REPORTS ON MATHEMATICAL PHYSICS, 2008, 61 (02) : 247 - 252
  • [26] Talalaev D, 2004, Arxiv, DOI arXiv:hep-th/0404153
  • [27] Vermaseren J., 2013, FORM
  • [28] 4D Chern-Simons theory and affine Gaudin models
    Vicedo, Benoit
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2021, 111 (01)
  • [29] On Integrable Field Theories as Dihedral Affine Gaudin Models
    Vicedo, Benoit
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2020, 2020 (15) : 4513 - 4601
  • [30] Vertex Lie algebras and cyclotomic coinvariants
    Vicedo, Benoit
    Young, Charles
    [J]. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2017, 19 (02)