Quartic Hamiltonians, and higher Hamiltonians at next-to-leading order, for the affine sl2 Gaudin model

被引:3
作者
Franzini, Tommaso [1 ]
Young, Charles [1 ]
机构
[1] Univ Hertfordshire, Dept Phys Astron & Math, Hatfield AL10 9AB, England
关键词
integrable models; integrable systems; affine Gaudin models; Gaudin models; higher Hamiltonians; sl2 Gaudin model; higher Hamiltonians at leading order;
D O I
10.1088/1751-8121/acbacf
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this work we will use a general procedure to construct higher local Hamiltonians for the affine sl(2 )Gaudin model. We focus on the first non-trivial example, the quartic Hamiltonians. We show by direct calculation that the quartic Hamiltonians commute amongst themselves and with the quadratic Hamiltonians which define the model. We go on to introduce a certain next-to-leading order semi-classical limit of the model. In this limit, we are able to write down the full hierarchy of higher local Hamiltonians and prove that they commute.
引用
收藏
页数:24
相关论文
共 30 条
  • [1] Kotousov GA, 2022, Arxiv, DOI arXiv:2204.06554
  • [2] Integrable structure of conformal field theory - II. Q-operator and DDV equation
    Bazhanov, VV
    Lukyanov, SL
    Zamolodchikov, AB
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 190 (02) : 247 - 278
  • [3] Drinfeld V.G., 1984, J. Sov. Math., V30, P1975
  • [4] Local conserved charges in principal chiral models
    Evans, JM
    Hassan, M
    MacKay, NJ
    Mountain, AJ
    [J]. NUCLEAR PHYSICS B, 1999, 561 (03) : 385 - 412
  • [5] Integrable sigma-models and Drinfeld-Sokolov hierarchies
    Evans, JM
    [J]. NUCLEAR PHYSICS B, 2001, 608 (03) : 591 - 609
  • [6] GAUDIN MODEL, BETHE-ANSATZ AND CRITICAL-LEVEL
    FEIGIN, B
    FRENKEL, E
    RESHETIKHIN, N
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 166 (01) : 27 - 62
  • [7] Feigin B, 2009, Arxiv, DOI arXiv:0705.2486
  • [8] Frenkel E, 2005, PROG MATH, V237, P1
  • [9] Frenkel E, 2002, ASTERISQUE, P299
  • [10] DIAGONALIZATION OF A CLASS OF SPIN HAMILTONIANS
    GAUDIN, M
    [J]. JOURNAL DE PHYSIQUE, 1976, 37 (10): : 1087 - 1098