Minimum length (scale) in quantum field theory, generalized uncertainty principle and the non-renormalisability of gravity

被引:6
作者
Casadio, Roberto [1 ,2 ]
Feng, Wenbin [1 ,2 ]
Kuntz, Ibere [3 ]
Scardigli, Fabio [4 ,5 ]
机构
[1] Univ Bologna, Dipartimento Fis & Astron, via Irnerio 46, I-40126 Bologna, Italy
[2] INFN, Sez Bologna, IS FLAG, viale B Pichat 6-2, I-40127 Bologna, Italy
[3] Univ Fed Parana, Dept Fis, POB 19044, BR-81531980 Curitiba, Parana, Brazil
[4] Politecn Milan, Dipartimento Matemat, Piazza Leonardo Vinci 32, I-20133 Milan, Italy
[5] Univ Waterloo, Dept Appl Math, Waterloo, ON N2L 3G1, Canada
关键词
BLACK-HOLES; PHYSICAL LENGTH; PLANCK LENGTH; GUP PARAMETER; ENERGY; BOUNDS;
D O I
10.1016/j.physletb.2023.137722
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The notions of minimum geometrical length and minimum length scale are discussed with reference to correlation functions obtained from in-in and in-out amplitudes in quantum field theory. Whereas the in -in propagator for metric perturbations does not admit the former, the in-out Feynman propagator shows the emergence of the latter. A connection between the Feynman propagator of quantum field theories of gravity and the deformation parameter 80 of the generalised uncertainty principle (GUP) is then exhibited, which allows to determine an exact expression for 80 in terms of the residues of the causal propagator. A correspondence between the non-renormalisability of (some) theories (of gravity) and the existence of a minimum length scale is then conjectured to support the idea that non-renormalisable theories are self-complete and finite. The role played by the sign of the deformation parameter is further discussed by considering an implementation of the GUP on the lattice.(c) 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons .org /licenses/by/4.0/). Funded by SCOAP3.
引用
收藏
页数:6
相关论文
共 63 条
  • [1] The generalized uncertainty principle and black hole remnants
    Adler, RJ
    Chen, PS
    Santiago, DI
    [J]. GENERAL RELATIVITY AND GRAVITATION, 2001, 33 (12) : 2101 - 2108
  • [2] On gravity and the uncertainty principle
    Adler, RJ
    Santiago, DI
    [J]. MODERN PHYSICS LETTERS A, 1999, 14 (20) : 1371 - 1381
  • [3] Hubble tension bounds the GUP and EUP parameters
    Aghababaei, S.
    Moradpour, H.
    Vagenas, Elias C.
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 136 (10)
  • [4] CAN SPACETIME BE PROBED BELOW THE STRING SIZE
    AMATI, D
    CIAFALONI, M
    VENEZIANO, G
    [J]. PHYSICS LETTERS B, 1989, 216 (1-2) : 41 - 47
  • [5] SUPERSTRING COLLISIONS AT PLANCKIAN ENERGIES
    AMATI, D
    CIAFALONI, M
    VENEZIANO, G
    [J]. PHYSICS LETTERS B, 1987, 197 (1-2) : 81 - 88
  • [6] FINITE SELF-ENERGY OF CLASSICAL POINT PARTICLES
    ARNOWITT, R
    DESER, S
    MISNER, CW
    [J]. PHYSICAL REVIEW LETTERS, 1960, 4 (07) : 375 - 377
  • [7] Astrophysical production of microscopic black holes in a low-Planck-scale world
    Barrau, A
    Féron, C
    Grain, J
    [J]. ASTROPHYSICAL JOURNAL, 2005, 630 (02) : 1015 - 1019
  • [8] ENTROPY BOUNDS AND BLACK-HOLE REMNANTS
    BEKENSTEIN, JD
    [J]. PHYSICAL REVIEW D, 1994, 49 (04): : 1912 - 1921
  • [9] Renormalization group improved black hole spacetimes
    Bonanno, A
    Reuter, M
    [J]. PHYSICAL REVIEW D, 2000, 62 (04) : 21
  • [10] Critical Reflections on Asymptotically Safe Gravity
    Bonanno, Alfio
    Eichhorn, Astrid
    Gies, Holger
    Pawlowski, Jan M.
    Percacci, Roberto
    Reuter, Martin
    Saueressig, Frank
    Vacca, Gian Paolo
    [J]. FRONTIERS IN PHYSICS, 2020, 8